Skip to main content

Advertisement

Log in

Functional Expression of PEPT2 in the Human Distal Lung Epithelial Cell Line NCl-H441

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The peptide transporter PEPT2 is expressed in alveolar type II epithelial cells. So far, however, no appropriate alveolar epithelial cell line for studying PEPT2 function has been known. In this study, we examined the functional expression of PEPT2 in the human distal lung epithelial cell line NCl-H441 (H441).

Methods

Expression of PEPT2 mRNA and protein was examined in H441 cells. Transport function of PEPT2 was studied using glycylsarcosine (Gly-Sar) as a substrate.

Results

Lamellar bodies were well developed in H441 cells and mRNA expression of type II cell markers and PEPT2 increased during time in culture. PEPT2 protein expression was confirmed in H441 cells, but not in A549 cells, by immunostaining and Western blotting. The uptake of Gly-Sar in H441 cells was inhibited by cefadroxil, and the cefadroxil-sensitive uptake was pH-dependent and peaked at pH 6.5. Gly-Sar uptake in H441 cells showed saturation kinetics with a K m value of 112.5 μM. In addition, apical-to-basal, but not basal-to-apical, transport of cephalexin across H441 cell monolayers was sensitive to cefadroxil.

Conclusions

PEPT2 is functionally expressed in H441 cells, making the cell line a good in vitro model to study PEPT2 function and its regulation in human distal lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3OMG:

3-O-Methyl-D-glucose

ABCA3:

ATP-binding cassette A3

CLSM:

Confocal laser scanning microscopy

DEX:

Dexamethasone

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Gly-Sar:

Glycylsarcosine

H441:

NCl-H441

HPLC:

High performance liquid chromatography

ITS:

Insulin-transferrin-sodium selenite

LysoTracker Red:

Lyso-Tracker® Red DND-99

NOD1:

Nucleotide-binding oligomerization domain protein 1

PBS:

Phosphate-buffered saline

rBBM:

Renal brush-border membrane

SP-C:

Surfactant protein C

TEER:

Transepithelial electrical resistance

γ-iE-DAP:

γ-D-Glutamyl-meso-diaminopimelic acid

References

  1. Patton JS. Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev. 1996;19:3–36.

    Article  CAS  Google Scholar 

  2. Takano M, Aoki A, Kawami M, Yumoto R. Receptor-mediated endocytosis of macromolecules and strategy to enhance their transport in alveolar epithelial cells. Expert Opin Drug Deliv. 2015;12(5):813–25.

    Article  PubMed  Google Scholar 

  3. Patton JS, Brain JD, Davies LA, Fiegel J, Gumbleton M, Kim KJ, et al. The particle has landed--characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulm Drug Deliv. 2010;23 Suppl 2:S71–87.

    CAS  PubMed  Google Scholar 

  4. Gumbleton M, Al-Jayyoussi G, Crandon-Lewis A, Francombe D, Kreitmeyr K, Morris CJ, et al. Spatial expression and functionality of drug transporters in the intact lung: objectives for further research. Adv Drug Deliv Rev. 2011;63(1–2):110–8.

    Article  CAS  PubMed  Google Scholar 

  5. Bur M, Huwer H, Lehr CM, Hagen N, Guldbrandt M, Kim KJ, et al. Assessment of transport rates of proteins and peptides across primary human alveolar epithelial cell monolayers. Eur J Pharm Sci. 2006;28(3):196–203.

    Article  CAS  PubMed  Google Scholar 

  6. Ikehata M, Yumoto R, Nakamura K, Nagai J, Takano M. Comparison of albumin uptake in rat alveolar type II and type I-like epithelial cells in primary culture. Pharm Res. 2008;25(4):913–22.

    Article  CAS  PubMed  Google Scholar 

  7. Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch. 2004;447(5):610–8.

    Article  CAS  PubMed  Google Scholar 

  8. Brandsch M, Knütter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol. 2008;60(5):543–85.

    Article  CAS  PubMed  Google Scholar 

  9. Boll M, Herget M, Wagener M, Weber WM, Markovich D, Biber J, et al. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter. Proc Natl Acad Sci U S A. 1996;93(1):284–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Saito H, Terada T, Okuda M, Sasaki S, Inui K. Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochim Biophys Acta. 1996;1280(2):173–7.

    Article  PubMed  Google Scholar 

  11. Newstead S. Towards a structural understanding of drug and peptide transport within the proton-dependent oligopeptide transporter (POT) family. Biochem Soc Trans. 2011;39(5):1353–8.

    Article  CAS  PubMed  Google Scholar 

  12. Terada T, Saito H, Mukai M, Inui K. Recognition of beta-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am J Physiol. 1997;273(5 Pt 2):F706–11.

    CAS  PubMed  Google Scholar 

  13. Biegel A, Knütter I, Hartrodt B, Gebauer S, Theis S, Luckner P, et al. The renal type H+/peptide symporter PEPT2: structure-affinity relationships. Amino Acids. 2006;31(2):137–56.

    Article  CAS  PubMed  Google Scholar 

  14. Groneberg DA, Nickolaus M, Springer J, Döring F, Daniel H, Fischer A. Localization of the peptide transporter PEPT2 in the lung: implications for pulmonary oligopeptide uptake. Am J Pathol. 2001;158(2):707–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Groneberg DA, Eynott PR, Döring F, Dinh QT, Oates T, Barnes PJ, et al. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung. Thorax. 2002;57(1):55–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Takano M, Horiuchi T, Sasaki Y, Kato Y, Nagai J, Yumoto R. Expression and function of PEPT2 during transdifferentiation of alveolar epithelial cells. Life Sci. 2013;93(17):630–6.

    Article  CAS  PubMed  Google Scholar 

  17. Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev. 2006;58(9–10):1030–60.

    Article  CAS  PubMed  Google Scholar 

  18. Forbes B, Ehrhardt C. Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm. 2005;60(2):193–205.

    Article  CAS  PubMed  Google Scholar 

  19. Hermanns MI, Unger RE, Kehe K, Peters K, Kirkpatrick CJ. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. Lab Invest. 2004;84(6):736–52.

    Article  CAS  PubMed  Google Scholar 

  20. Shlyonsky V, Goolaerts A, Van Beneden R, Sariban-Sohraby S. Differentiation of epithelial Na+ channel function. An in vitro model. J Biol Chem. 2005;280(25):24181–7.

    Article  CAS  PubMed  Google Scholar 

  21. Salomon JJ, Muchitsch VE, Gausterer JC, Elena S, Huwer H, Daum N, et al. The cell line NCl-H441 is a useful in vitro model for transport studies of human distal lung epithelial barrier. Mol Pharm. 2014;11:995–1006.

    Article  CAS  PubMed  Google Scholar 

  22. Yumoto R, Suzuka S, Nishimoto S, Nagai J, Takano M. Enhancing effect of poly(amino acid)s on albumin uptake in human lung epithelial A549 cells. Drug Metab Pharmacokinet. 2013;28(6):497–503.

    Article  CAS  PubMed  Google Scholar 

  23. Kawami M, Miyamoto M, Yumoto R, Takanno M. Methotrexate influx via folate transporters into alveolar epithelial cell line A549. Drug Metab Pharmacokinet. 2015. doi:10.1016/j.dmpk.2015.04.005.

    Google Scholar 

  24. Nagai J, Komeda T, Katagiri Y, Yumoto R, Takano M. Characterization of protamine uptake by opossum kidney epithelial cells. Biol Pharm Bull. 2013;36(12):1942–9.

    Article  CAS  PubMed  Google Scholar 

  25. Fujii K, Nagai J, Sawada T, Yumoto R, Takano M. Effect of PEGylation of N-WASP181-200 on the inhibitory potency for renal aminoglycoside accumulation. Bioconjug Chem. 2009;20(8):1553–8.

    Article  CAS  PubMed  Google Scholar 

  26. Yamano G, Funahashi H, Kawanami O, Zhao LX, Ban N, Uchida Y, et al. ABCA3 is a lamellar body membrane protein in human lung alveolar type II cells. FEBS Lett. 2001;508(2):221–5.

    Article  CAS  PubMed  Google Scholar 

  27. Goodman BE, Crandall ED. Dome formation in primary cultured monolayers of alveolar epithelial cells. Am J Physiol. 1982;243(1):C96–C100.

    CAS  PubMed  Google Scholar 

  28. Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev. 2002;82(3):569–600.

    Article  CAS  PubMed  Google Scholar 

  29. Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976;17(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  30. Yumoto R, Nishikawa H, Okamoto M, Katayama H, Nagai J, Takano M. Clathrin-mediated endocytosis of FITC-albumin in alveolar type II epithelial cell line RLE-6TN. Am J Physiol Lung Cell Mol Physiol. 2006;290(5):L946–55.

    Article  CAS  PubMed  Google Scholar 

  31. Takano M, Horiuchi T, Nagai J, Yumoto R. Effect of cigarette smoke extract on insulin transport in alveolar epithelial cell line A549. Lung. 2012;190(6):651–9.

    Article  CAS  PubMed  Google Scholar 

  32. Takano M, Yamamoto C, Sambuichi K, Oda K, Nagai J, Shimamoto A, et al. Introduction of a single transporter gene ABCA3 directs RLE-6TN to more type II-like alveolar epithelial cells. Membrane. 2013;38(5):246–53.

    Article  CAS  Google Scholar 

  33. Gazdar AF, Linnoila RI, Kurita Y, Oie HK, Mulshine JL, Clark JC, et al. Peripheral airway cell differentiation in human lung cancer cell lines. Cancer Res. 1990;50(17):5481–7.

    CAS  PubMed  Google Scholar 

  34. Hermanns MI, Fuchs S, Bock M, Wenzel K, Mayer E, Kehe K, et al. Primary human coculture model of alveolo-capillary unit to study mechanisms of injury to peripheral lung. Cell Tissue Res. 2009;336(1):91–105.

    Article  PubMed  Google Scholar 

  35. Neuhaus W, Samwer F, Kunzmann S, Muellenbach RM, Wirth M, Speer CP, et al. Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model. Differentiation. 2012;84(4):294–304.

    Article  CAS  PubMed  Google Scholar 

  36. Sala-Rabanal M, Loo D, Hirayama B, Wright E. Molecular mechanism of dipeptide and drug transport by the human renal H+/oligopeptide cotransporter hPEPT2. Am J Physiol Renal Physiol. 2008;294(6):F1422–32.

    Article  CAS  PubMed  Google Scholar 

  37. Sakamoto A, Matsumaru T, Yamamura N, Suzuki S, Uchida Y, Tachikawa M, et al. Drug transporter protein quantification of immortalized human lung cell lines derived from tracheobronchial epithelial cells (Calu-3 and BEAS2-B), bronchiolar-alveolar cells (NCI-H292 and NCI-H441), and alveolar type II-like cells (A549) by liquid chromatography-tandem mass spectrometry. J Pharm Sci. 2015. doi:10.1002/jps.24381.

    Google Scholar 

  38. Søndergaard HB, Brodin B, Nielsen CU. hPEPT1 is responsible for uptake and transport of Gly-Sar in the human bronchial airway epithelial cell-line Calu-3. Pflugers Arch. 2008;456(3):611–22.

    Article  PubMed  Google Scholar 

  39. Smith DE, Clémençon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Asp Med. 2013;34(2–3):323–36.

    Article  CAS  Google Scholar 

  40. Terada T, Sawada K, Saito H, Hashimoto Y, Inui K. Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Am J Physiol. 1999;276(6 Pt 1):G1435–41.

    CAS  PubMed  Google Scholar 

  41. Terada T, Sawada K, Ito T, Saito H, Hashimoto Y, Inui K. Functional expression of novel peptide transporter in renal basolateral membranes. Am J Physiol Renal Physiol. 2000;279(5):F851–7.

    CAS  PubMed  Google Scholar 

  42. Putnam WS, Pan L, Tsutsui K, Takahashi L, Benet LZ. Comparison of bidirectional cephalexin transport across MDCK and caco-2 cell monolayers: interactions with peptide transporters. Pharm Res. 2002;19(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  43. Swaan PW, Bensman T, Bahadduri PM, Hall MW, Sarkar A, Bao S, et al. Bacterial peptide recognition and immune activation facilitated by human peptide transporter PEPT2. Am J Respir Cell Mol Biol. 2008;39(5):536–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Barton JL, Berg T, Didon L, Nord M. The pattern recognition receptor Nod1 activates CCAAT/enhancer binding protein beta signalling in lung epithelial cells. Eur Respir J. 2007;30(2):214–22.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank the Analysis Center of Life Science, the Institute of Laboratory Animal Science, and the Natural Science Center for Basic Research and Development, Hiroshima University for the use of their facilities. We also thank Ms. C. Yamamoto and Mr. J. Deguchi for their helpful assistance in working on this study. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikihisa Takano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takano, M., Sugimoto, N., Ehrhardt, C. et al. Functional Expression of PEPT2 in the Human Distal Lung Epithelial Cell Line NCl-H441. Pharm Res 32, 3916–3926 (2015). https://doi.org/10.1007/s11095-015-1751-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1751-x

KEY WORDS

Navigation