Skip to main content

Advertisement

Log in

Transdermal Delivery of Cytochrome C—A 12.4 kDa Protein—Across Intact Skin by Constant–Current Iontophoresis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To demonstrate the transdermal iontophoretic delivery of a small (12.4 kDa) protein across intact skin.

Materials and Methods

The iontophoretic transport of Cytochrome c (Cyt c) across porcine ear skin in vitro was investigated and quantified by HPLC. The effect of protein concentration (0.35 and 0.7 mM), current density (0.15, 0.3 or 0.5 mA.cm−2 applied for 8 h) and competing ions was evaluated. Co-iontophoresis of acetaminophen was employed to quantify the respective contributions of electromigration (EM) and electroosmosis (EO).

Results

The data confirmed the transdermal iontophoretic delivery of intact Cyt c. Electromigration was the principal transport mechanism, accounting for ∼90% of delivery; correlation between EM flux and electrophoretic mobility was consistent with earlier results using small molecules. Modest EO inhibition was observed at 0.5 mA.cm−2. Cumulative permeation at 0.3 and 0.5 mA.cm−2 was significantly greater than that at 0.15 mA.cm−2; fluxes using 0.35 and 0.7 mM Cyt c in the absence of competing ions (J tot  = 182.8 ± 56.8 and 265.2 ± 149.1 μg.cm−2.h−1, respectively) were statistically equivalent. Formulation in PBS (pH 8.2) confirmed the impact of competing charge carriers; inclusion of ∼170 mM Na+ resulted in a 3.9-fold decrease in total flux.

Conclusions

Significant amounts (∼0.9 mg.cm−2 over 8 h) of Cyt c were delivered non-invasively across intact skin by transdermal electrotransport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACE:

acetaminophen

Cyt c:

cytochrome c

CZE:

capillary zone electrophoresis

EM:

electromigration

EO:

electroosmosis

JEM, Cyt c :

flux due to electromigration of Cyt c

JEO, Cyt c :

flux due to electroosmosis of Cyt c

Jtot, Cyt c :

total steady-state flux of Cyt c

Vw :

convective solvent flow

References

  1. Y. B. Schuetz, P-A. Carrupt, A. Naik, R. H. Guy, and Y. N. Kalia. Structure-permeation relationships for the non-invasive transdermal delivery of cationic peptides by iontophoresis. Eur. J. Pharm. Sci. 29:53–59 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. R. R. Burnette. Iontophoresis. In J. Hadgraft and R. Guy (eds.), Transdermal Drug Delivery, Marcel Dekker, New York, 1989, pp. 247–288.

    Google Scholar 

  3. Y. N. Kalia, A. Naik, J. Garrison, and R. H. Guy. Iontophoretic drug delivery. Adv. Drug Deliv. Rev. 56:619–658 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. M. C. Heit, P. L. Williams, F. L. Jayes, S. K. Chang, and J. E. Riviere. Transdermal iontophoretic peptide delivery: in vitro and in vivo studies with luteinizing hormone releasing hormone. J. Pharm. Sci. 82:240–243 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. J. Raiman, M. Koljonen, K. Huikko, R. Kostiainen, and J. Hirvonen. Delivery and stability of LHRH and Nafarelin in human skin: the effect of constant/pulsed iontophoresis. Eur. J. Pharm. Sci. 21:371–377 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. P. Santi, N. M. Volpato, R. Bettini, P. L. Catellani, G. Massimo, and P. Colombo. Transdermal iontophoresis of salmon calcitonin can reproduce the hypocalcemic effect of intravenous administration. Farmaco 52:445–448 (1997).

    PubMed  CAS  Google Scholar 

  7. A. Chaturvedula, D. P. Joshi, C. Anderson, R. L. Morris, W. L. Sembrowich, and A. K. Banga. In vivo iontophoretic delivery and pharmacokinetics of salmon calcitonin. Int. J. Pharm. 297:190–196 (2005).

    PubMed  CAS  Google Scholar 

  8. S. Kumar, H. Char, S. Patel, D. Piemontese, A. W. Malick, K. Iqbal, E. Neugroschel, and Ch. R. Behl. Effect of iontophoresis on in vitro skin permeation of an analog of growth hormone releasing factor in the hairless guinea pig model. J. Pharm. Sci. 81:635–639 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. Y. Suzuki, K. Iga, Sh. Yanai, Y. Matsumoto, M. Kawase, T. Fukuda, H. Adachi, N. Higo, and Y. Ogawa. Iontophoretic pulsatile transdermal delivery of human parathyroid hormone (1–34). J. Pharm. Pharmacol. 53:1227–1234 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. L. Langkjaer, J. Brange, G. M. Grodsky, and R. H. Guy. Iontophoresis of monomeric insulin analogs in vitro: effects of insulin charge and skin pretreatment. J. Control. Release 51:47–56 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. O. Pillai and R. Panchagnula. Transdermal iontophoresis of insulin: V. Effect of terpenes. J. Control. Release 88:287–296 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. N. G. Turner, L. Ferry, M. Price, C. Cullander, and R. H. Guy. Iontophoresis of poly-L-lysines: the role of molecular weight? Pharm. Res. 14:1322–1331 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. R. Haak and S. K. Gupta. Pulsatile drug delivery from electrotransport therapeutic systems. In R. Gurny, H. E. Junginger, and N. A. Peppas (eds.), Pulsatile Drug Delivery—Current Applications and Future Trends, Wiss, Verl.-Ges., Stuttgart, 1993, pp. 99–112.

    Google Scholar 

  14. P. Green. Iontophoretic delivery of peptide drugs. J. Control. Release 41:33–48 (1996).

    Article  CAS  Google Scholar 

  15. M. B. Delgado-Charro and R. H. Guy. Iontophoresis of peptides. In Bret Berner and S. M. Dinh (eds.), Electronically Controlled Drug Delivery, Vol. 1, CRS, New York, 1998, pp. 129–157.

    Google Scholar 

  16. R. H. Guy, Y. N. Kalia, M. B. Delgado-Charro, V. Merino, A. López, and D. Marro. Iontophoresis: electrorepulsion and electroosmosis. J. Control. Release 64:129–132 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. N. Abla, A. Naik, R. H. Guy, and Y. N. Kalia. Effect of charge and molecular weight on transdermal peptide delivery by iontophoresis. Pharm. Res. 22:2069–2078 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. N. Abla, L. Geiser, M. Mirgaldi, A. Naik, J.-L. Veuthey, R. H. Guy, and Y. N. Kalia. Capillary zone electrophoresis for the estimation of transdermal iontophoretic mobility. J. Pharm. Sci. 94:2667–2675 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. G. W. Bushnell, G. V. Louie, and G. D. Brayer. High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 214:585–595 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. Y. B. Schuetz, A. Naik, R. H. Guy, E. Vuaridel, and Y. N. Kalia. Transdermal iontophoretic delivery of vapreotide acetate across porcine skin in vitro. Pharm. Res. 22:1305–1312 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. M. J. Picklo, J. Zhang, V. Q. Nguyen, D. G. Graham, and T. J. Montine. High pressure liquid chromatography quantitation of Cytochrome c using 393 nm detection. Anal. Biochem. 276:166–170 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. N. Abla, A. Naik, R. H. Guy, and Y. N. Kalia. Contributions of electromigration and electroosmosis to peptide iontophoresis across intact and impaired skin. J. Control. Release 108:319–330 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. J. E. De Muth. Basic Statistics and Pharmaceutical Statistical Applications, Marcel Dekker, New York, 1999.

    Google Scholar 

  24. D. T. W. Lau, J. W. Sharkey, L. Petryk, F. A. Mancuso, Z. Yu, and F. L. S. Tse. Effect of current magnitude and drug concentration on iontophoretic delivery of octreotide acetate (Sandostatin®) in the rabbit. Pharm. Res. 11:1742–1746 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. S. K. Gupta, M. Southam, G. Sathyan, and M. Klausner. Effect of current density on pharmacokinetics following continuous or intermittent input from a fentanyl electrotransport system. J. Pharm. Sci. 87:976–981 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. P. Singh, S. Boniello, P. Liu, and S. Dinh. Transdermal iontophoretic delivery of methylphenidate HCl in vitro. Int. J. Pharm. 178:121–128 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. Y. B. Schuetz, A. Naik, R. H. Guy, E. Vuaridel, and Y. N. Kalia. Transdermal iontophoretic delivery of triptorelin in vitro. J. Pharm. Sci. 94:2175–2182 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. G. B. Kasting and J. C. Keister. Application of electrodiffusion theory for a homogeneous membrane to iontophoretic transport through skin. J. Control. Release 8:195–210 (1989).

    Article  CAS  Google Scholar 

  29. W. H. M. Craane-van Hinsberg, L. Bax, N. H. M. Flinterman, J. Verhoef, H. E. Junginger, and H. E. Bodde. Iontophoresis of a model peptide across human skin in vitro: effects of iontophoresis protocol, pH and ionic strength on peptide flux and skin impedance. Pharm. Res. 11:1296–1300 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. M. F. Lu, D. Lee, R. Carlson, G. S. Rao, H. W. Hui, L. Adjei, M. Herrin, D. Sundberg, and L. Hsu. The effects of formulation variables on iontophoretic transdermal delivery of leuprolide to humans. Drug Deliv. Ind. Pharm. 19:1557–1571 (1993).

    CAS  Google Scholar 

  31. Y. B. Schuetz, A. Naik, R. H. Guy, and Y. N. Kalia. Effect of amino acid sequence on transdermal iontophoretic peptide delivery. Eur. J. Pharm. Sci. 26:429–437 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. G. H. Barlow and E. Margoliash. Electrophoretic behaviour of mammalian-type cytochromes c. J. Biol. Chem. 241:1473–1477 (1966).

    PubMed  CAS  Google Scholar 

  33. J. Hirvonen and R. H. Guy. Transdermal iontophoresis: modulation of electroosmosis by polypeptide. J. Control. Release 50:283–289 (1998).

    Article  PubMed  Google Scholar 

  34. R. V. Rice, M. A. Stahmann, and R. A. Alberty. The interaction of lysine polypeptides and bovine plasma albumin. J. Biol. Chem. 209:105–115 (1954).

    PubMed  CAS  Google Scholar 

  35. J. Hirvonen and R. H. Guy. Iontophoretic delivery across the skin: electroosmosis and its modulation by drug substances. Pharm. Res. 14:1258–1263 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. D. Marro, Y. N. Kalia, M. B. Delgado-Charro, and R. H. Guy. Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm. Res. 18:1701–1708 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. I. Ichinose, Y. Hashimoto, and T. Kunitake. Wrapping of bio-macromolecule (dextran, amylopectin and horse heart Cytochrome c) with ultrathin silicate layer. Chem. Lett. 33:656–657 (2004).

    Article  CAS  Google Scholar 

  38. V. Aguilella, K. Kontturi, L. Murtomäki, and P. Ramirez. Estimation of the pore size and charge density in human cadaver skin. J. Control. Release 32:249–257 (1994).

    Article  CAS  Google Scholar 

  39. O. D. Uitto and H. S. White. Electroosmotic pore transport in human skin. Pharm. Res. 20:646–652 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. M. J. Pikal. Transport mechanisms in iontophoresis: I. A theoretical model for the effect of electroosmotic flow on flux enhancement in transdermal iontophoresis. Pharm. Res. 7:118–126 (1990).

    Article  PubMed  CAS  Google Scholar 

  41. S. B. Ruddy and B. W. Hadzija. Iontophoretic permeability of polyethylene glycols through hairless rat skin: application of hydrodynamic theory for hindered transport through liquid-filled pores. Drug Des. Discov. 8:207–224 (1992).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Leonardo Scapozza and Dr. Shaheen Ahmed for help with the molecular graphics representations of Cytochrome c. J. Cázares Delgadillo acknowledges support from CONACYT (Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. N. Kalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cázares-Delgadillo, J., Naik, A., Ganem-Rondero, A. et al. Transdermal Delivery of Cytochrome C—A 12.4 kDa Protein—Across Intact Skin by Constant–Current Iontophoresis. Pharm Res 24, 1360–1368 (2007). https://doi.org/10.1007/s11095-007-9294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9294-4

Key words

Navigation