Skip to main content
Log in

Learning from Viruses: The Necrotic Bodies of Tumor Cells with Intracellular Synthetic dsRNA Induced Strong Anti-tumor Immune Responses

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Coaxing dead tumor cells to induce specific immune responses is an attractive tumor therapy. However, there continues to be a need for adjuvants that can promote the cross-presentation of the dead tumor cells to induce specific anti-tumor response. Viral dsRNA has multiple mechanisms to promote the cross-presentation of viral antigens in virus-infected cells. We propose to learn from viruses by generating dead tumor cells having synthetic dsRNA delivered inside them to allow the dsRNA to promote the cross-presentation of dead tumor cells.

Materials and Methods

Using synthetic dsRNA, poly(I:C), and the TC-1 cervical cancer model, we evaluated the extent to which the poly(I:C) can promote the necrotic bodies of TC-1 cells to induce specific anti-tumor immune response. The poly(I:C) was either simply mixed with the dead TC-1 cells or pre-loaded inside them.

Results

Immunization of tumor-bearing mice with the necrotic bodies of tumor cells admixed with poly(I:C) significantly inhibited the tumor growth. More importantly, immunization with the necrotic bodies having poly(I:C) pre-loaded inside led to a significantly stronger anti-tumor response than when the necrotic bodies were simply admixed with the poly(I:C), apparently through a CD8+ CTL response-mediated mechanism.

Conclusions

These findings are expected to be clinically relevant for devising improved whole cell-based tumor vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. E. Kaufman, E. D. Ellison, and S. R. Waltman. Double-stranded RNA, an interferon inducer, in herpes simplex keratitis. Am. J. Ophthalmol. 68:486–491 (1969).

    PubMed  CAS  Google Scholar 

  2. G. R. Foster, and N. B. Finter. Are all type I human interferons equivalent? J. Viral Hepatitis 5:143–152 (1998).

    Article  CAS  Google Scholar 

  3. M. Chawla-Sarkar, D. J. Lindner, Y. F. Liu, B. R. Williams, G. C. Sen, R. H. Silverman, and E. C. Borden. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8:237–249 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. L. G. Guidotti, and F. V. Chisari. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19:65–91 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. G. R. Stark, I. M. Kerr, B. R. Williams, R. H. Silverman, and R. D. Schreiber. How cells respond to interferons. Annu. Rev. Biochem. 67:227–264 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. Y. L. Yang, L. F. Reis, J. Pavlovic, A. Aguzzi, R. Schafer, A. Kumar, B. R. Williams, M. Aguet, and C. Weissmann. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14:6095–6106 (1995).

    PubMed  CAS  Google Scholar 

  7. R. Herman and S. Baron. Immunologic-mediated protection of Trypanosoma congolense-infected mice by polyribonucleotides. J. Protozool. 18:661–666 (1971).

    PubMed  CAS  Google Scholar 

  8. J. H. Park, and S. Baron. Herpetic keratoconjunctivitis: therapy with synthetic double-stranded RNA. Science 162:811–813 (1968).

    Article  PubMed  CAS  Google Scholar 

  9. L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. R. M. Verdijk, T. Mutis, B. Esendam, J. Kamp, C. J. Melief, A. Brand, and E. Goulmy. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J. Immunol. 163:57–61 (1999).

    PubMed  CAS  Google Scholar 

  11. K. N. Schmidt, B. Leung, M. Kwong, K. A. Zarember, S. Satyal, T. A. Navas, F. Wang, and P. J. Godowski. APC-independent activation of NK cells by the Toll-like receptor 3 agonist double-stranded RNA. J. Immunol. 172:138–143 (2004).

    PubMed  CAS  Google Scholar 

  12. S. Sivori, M. Falco, M. Della Chiesa, S. Carlomagno, M. Vitale, L. Moretta, and A. Moretta. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc. Natl. Acad. Sci. U. S. A. 101:10116–10121 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. A. E. Gelman, J. Zhang, Y. Choi, and L. A. Turka. Toll-like receptor ligands directly promote activated CD4+ T cell survival. J. Immunol. 172:6065–6073 (2004).

    PubMed  CAS  Google Scholar 

  14. M. L. Salem, A. N. Kadima, D. J. Cole, and W. E. Gillanders. Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J. Immunother. 28:220–228 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. Z. R. Cui, and F. Qiu. CD4+ T helper cell response is required for memory in CD8+ T lymphocytes induced by a poly(I:C)-adjuvanted MHC I-restricted epitope. J. Immunother. 30:180–189 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. F. Henry, O. Boisteau, L. Bretaudeau, B. Lieubeau, K. Meflah, and M. Gregoire. Antigen-presenting cells that phagocytose apoptotic tumor-derived cells are potent tumor vaccines. Cancer Res. 59:3329–3332 (1999).

    PubMed  CAS  Google Scholar 

  17. A. Le Bon, N. Etchart, C. Rossmann, M. Ashton, S. Hou, D. Gewert, P. Borrow, and D. F. Tough. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol. 4:1009–1015 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. J. Frappa, P. Trotemann, Y. Beaudry, and R. Fontanges. Production of IFN beta with human fibroblasts in monolayer cultures. Comparative studies of induction with virus (NDV) and synthetic polynucleotides (poly I–poly C). Dev. Biol. Stand. 50:185–192 (1981).

    PubMed  CAS  Google Scholar 

  19. P. B. Sehgal, and A. D. Sagar. Heterogeneity of poly(I) x poly(C)-induced human fibroblast interferon mRNA species. Nature 288:95–97 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. O. Schulz, S. S. Diebold, M. Chen, T. I. Naslund, M. A. Nolte, L. Alexopoulou, Y. T. Azuma, R. A. Flavell, P. Liljestrom, and C. Reis e Sousa. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887–892 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. G. J. Fernando, V. Khammanivong, G. R. Leggatt, W. J. Liu, and I. H. Frazer. The number of long-lasting functional memory CD8+ T cells generated depends on the nature of the initial nonspecific stimulation. Eur. J. Immunol. 32:1541–1549 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. G. J. Fernando, T. J. Stewart, R. W. Tindle, and I. H. Frazer. Th2-type CD4+ cells neither enhance nor suppress antitumor CTL activity in a mouse tumor model. J. Immunol. 161:2421–2427 (1998).

    PubMed  CAS  Google Scholar 

  23. M. Salio, and V. Cerundolo. Viral immunity: cross-priming with the help of TLR3. Curr. Biol. 15:R336–R339 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. K. Y. Lin, F. G. Guarnieri, K. F. Staveley-O’Carroll, H. I. Levitsky, J. T. August, D. M. Pardoll, and T. C. Wu. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 56:21–26 (1996).

    PubMed  CAS  Google Scholar 

  25. P. Hwu, J. C. Yang, R. Cowherd, J. Treisman, G. E. Shafer, Z. Eshhar, and S. A. Rosenberg. In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res. 55:3369–3373 (1995).

    PubMed  CAS  Google Scholar 

  26. Z. Cui, and F. Qiu. Synthetic double-stranded RNA poly(I:C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model. Cancer Immunol. Immunother. 55:1267–1279 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. N. Fujita, H. Kagamu, H. Yoshizawa, K. Itoh, H. Kuriyama, N. Matsumoto, T. Ishiguro, J. Tanaka, E. Suzuki, H. Hamada, and F. Gejyo. CD40 ligand promotes priming of fully potent antitumor CD4(+) T cells in draining lymph nodes in the presence of apoptotic tumor cells. J. Immunol. 167:5678–5688 (2001).

    PubMed  CAS  Google Scholar 

  28. H. B. Levy, G. Baer, S. Baron, C. E. Buckler, C. J. Gibbs, M. J. Iadarola, W. T. London, and J. Rice. A modified polyriboinosinic–polyribocytidylic acid complex that induces interferon in primates. J. Infect. Dis. 132:434–9 (1975).

    PubMed  CAS  Google Scholar 

  29. W. E. Houston, C. L. Crabbs, E. L. Stephen, and H. B. Levy. Modified polyriboinosinic–polyribocytidylic acid, an immunological adjuvant. Infect. Immun. 14:318–319 (1976).

    PubMed  CAS  Google Scholar 

  30. A. Michael, G. Ball, N. Quatan, F. Wushishi, N. Russell, J. Whelan, P. Chakraborty, D. Leader, M. Whelan, and H. Pandha. Delayed disease progression after allogeneic cell vaccination in hormone-resistant prostate cancer and correlation with immunologic variables. Clin. Cancer Res. 11:4469–4478 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. A. A. Green, C. Pratt, R. G. Webster, and K. Smith. Immunotherapy of osteosarcoma patients with virus-modified tumor cells. Ann. N. Y. Acad. Sci. 277:396–411 (1976).

    Article  PubMed  CAS  Google Scholar 

  32. P. Hersey, A. S. Coates, W. H. McCarthy, J. F. Thompson, R. W. Sillar, R. McLeod, P. G. Gill, B. J. Coventry, A. McMullen, H. Dillon, and R. J. Simes. Adjuvant immunotherapy of patients with high-risk melanoma using vaccinia viral lysates of melanoma: results of a randomized trial. J. Clin. Oncol. 20:4181–4190 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. M. K. Wallack, M. Sivanandham, C. M. Balch, M. M. Urist, K. I. Bland, D. Murray, W. A. Robinson, L. Flaherty, J. M. Richards, A. A. Bartolucci, and L. Rosen. Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J. Am. Coll. Surg. 187:69–77, 77–79 (discussion) (1998).

    Google Scholar 

  34. G. P. Lampson, A. A. Tytell, A. K. Field, M. M. Nemes, and M. R. Hilleman. Inducers of interferon and host resistance. I. Double-stranded RNA from extracts of Penicillium funiculosum. Proc. Natl. Acad. Sci. U. S. A. 58:782–789 (1967).

    Article  PubMed  CAS  Google Scholar 

  35. P. J. Farrell, G. C. Sen, M. F. Dubois, L. Ratner, E. Slattery, and P. Lengyel. Interferon action: two distinct pathways for inhibition of protein synthesis by double-stranded RNA. Proc. Natl. Acad. Sci. U. S. A. 75:5893–5897 (1978).

    Article  PubMed  CAS  Google Scholar 

  36. E. F. Meurs, J. Galabru, G. N. Barber, M. G. Katze, and A. G. Hovanessian. Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. U. S. A. 90:232–236 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. A. Shir, M. Ogris, E. Wagner, and A. Levitzki. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PloS. Med. 3:e6 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Elsa U. Pardee Foundation and an OSU College of Pharmacy Translational Research Grant to Z.C. We would like to thank Malcolm Lowry for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengrong Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Z., Le, U.M., Qiu, F. et al. Learning from Viruses: The Necrotic Bodies of Tumor Cells with Intracellular Synthetic dsRNA Induced Strong Anti-tumor Immune Responses. Pharm Res 24, 1645–1652 (2007). https://doi.org/10.1007/s11095-007-9293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9293-5

Key words

Navigation