Skip to main content

Advertisement

Log in

Synthetic double-stranded RNA poly(I:C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Due to the inherent lack of immunogenicity of peptides, it is generally recognized that the strong inflammatory signals that are required to elicit specific responses against peptide-based therapeutic tumor vaccines may not be provided by the standard/conventional vaccine adjuvants. In this study, we have demonstrated dsRNA in the form of synthetic pI:C as a potent adjuvant to enhance the specific anti-tumor immune responses against a peptide-based vaccine. When complexed with an MHC I-restricted minimal peptide epitope derived from the HPV 16 E7 protein, the resulting pI:C/E749–57 molecular complex induced strong E749–57-specific CTL responses that caused significant regressions of model human cervical cancer tumors pre-established in mice. In addition, although the proportion of DCs in tumor-bearing mice was significantly decreased when compared to that in naïve mice, immunization with pI:C/E749–57 restored the proportion of DCs in tumor-bearing mice. Double-stranded RNA may hold a great potential as an adjuvant to induce cellular immune responses for tumor immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cells

LN:

Lymph node

HPV:

Human papillomavirus

TLR:

Toll-like receptor

PAMP:

Pathogen-associated molecular pattern

MHC:

Major histocompatibility complex

pDC:

Plasmocytoid DC

mDC:

Myeloid DC

NK:

Natural killer

pI:C or Poly(I:C):

Polyinosine-polycytidylic acid

CFSE:

5-(and-6-)-carboxylfluorescein diacetate, succinimidayl ester

s.c.:

Subcutaneous

HLA:

Human lymphocyte antigen

IFN:

Interferon

TAA:

Tumor-associated antigens

TSA:

Tumor-specific antigens

IFA:

Incomplete Freund’s adjuvant

References

  1. Buteau C, Markovic SN, Celis E (2002) Challenges in the development of effective peptide vaccines for cancer. Mayo Clin Proc 77(4):339–349

    Article  PubMed  CAS  Google Scholar 

  2. Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM (1996) CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci USA 93:2879–2883

    Article  PubMed  CAS  Google Scholar 

  3. Davila E, Kennedy R, Celis E (2003) Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Cancer Res 63(12):3281–3288

    PubMed  CAS  Google Scholar 

  4. Davila E, Celis E (2000) Repeated administration of cytosine-phosphorothiolated guanine-containing oligonucleotides together with peptide/protein immunization results in enhanced CTL responses with anti-tumor activity. J Immunol 165(1):539–547

    PubMed  CAS  Google Scholar 

  5. Miconnet I, Koenig S, Speiser D et al. (2002) CpG are efficient adjuvants for specific CTL induction against tumor antigen-derived peptide. J Immunol 168(3):1212–1218

    PubMed  CAS  Google Scholar 

  6. Speiser DE, Lienard D, Rufer N et al. (2005) Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 115(3):739–746

    Article  PubMed  CAS  Google Scholar 

  7. Kadowaki N, Ho S, Antonenko S et al. (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–869

    Article  PubMed  CAS  Google Scholar 

  8. Ulevitch RJ (2004) Therapeutics targeting the innate immune system. Nat Rev Immunol 4(7):512–520

    Article  PubMed  CAS  Google Scholar 

  9. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  PubMed  CAS  Google Scholar 

  10. Herman R, Baron S (1971) Immunologic-mediated protection of Trypanosoma congolense-infected mice by polyribonucleotides. J Protozool 18(4):661–666

    PubMed  CAS  Google Scholar 

  11. Park JH, Baron S (1968) Herpetic keratoconjunctivitis: therapy with synthetic double-stranded RNA. Science 162(855):811–813

    Article  PubMed  CAS  Google Scholar 

  12. Partidos CD, Hoebeke J, Moreau E et al. (2005) The binding affinity of double-stranded RNA motifs to HIV-1 Tat protein affects transactivation and the neutralizing capacity of anti-Tat antibodies elicited after intranasal immunization. Eur J Immunol 35(5):1521–1529

    Article  PubMed  CAS  Google Scholar 

  13. Ichinohe T, Watanabe I, Ito S et al. (2005) Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. J Virol 79(5):2910–2919

    Article  PubMed  CAS  Google Scholar 

  14. Fujimoto C, Nakagawa Y, Ohara K, Takahashi H (2004) Polyriboinosinic polyribocytidylic acid [poly(I:C)]/TLR3 signaling allows class I processing of exogenous protein and induction of HIV-specific CD8+ cytotoxic T lymphocytes. Int Immunol 16(1):55–63

    Article  PubMed  CAS  Google Scholar 

  15. Meier WA, Husmann RJ, Schnitzlein WM, Osorio FA, Lunney JK, Zuckermann FA (2004) Cytokines and synthetic double-stranded RNA augment the T helper 1 immune response of swine to porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 102(3):299–314

    Article  PubMed  CAS  Google Scholar 

  16. Verdijk RM, Mutis T, Esendam B et al. (1999) Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol 163(1):57–61

    PubMed  CAS  Google Scholar 

  17. Schmidt KN, Leung B, Kwong M et al. (2004) APC-independent activation of NK cells by the Toll-like receptor 3 agonist double-stranded RNA. J Immunol 172(1):138–143

    PubMed  CAS  Google Scholar 

  18. Sivori S, Falco M, Della Chiesa M et al. (2004) CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci USA 101(27):10116–10121

    Article  PubMed  CAS  Google Scholar 

  19. Gelman AE, Zhang J, Choi Y, Turka LA (2004) Toll-like receptor ligands directly promote activated CD4+ T cell survival. J Immunol 172(10):6065–6073

    PubMed  CAS  Google Scholar 

  20. Salem ML, Kadima AN, Cole DJ, Gillanders WE (2005) Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J Immunother 28(3):220–228

    Article  PubMed  CAS  Google Scholar 

  21. Schulz O, Diebold SS, Chen M et al. (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433(7028):887–892

    Article  PubMed  CAS  Google Scholar 

  22. Franco EL, Schlecht NF, Saslow D (2003) The epidemiology of cervical cancer. Cancer J 9(5):348–359

    Article  PubMed  Google Scholar 

  23. zur Hausen H, de Villiers EM (1994) Human papillomaviruses. Annu Rev Microbiol 48:427–447

    Article  PubMed  CAS  Google Scholar 

  24. Munoz N, Bosch FX, de Sanjose S et al. (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348(6):518–527

    Article  PubMed  Google Scholar 

  25. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505

    Article  PubMed  CAS  Google Scholar 

  26. Munger K, Scheffner M, Huibregtse JM, Howley PM (1992) Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv 12:197–217

    PubMed  CAS  Google Scholar 

  27. Borysiewicz LK, Fiander A, Nimako M et al. (1996) A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 347:1523–1527

    Article  PubMed  CAS  Google Scholar 

  28. Kaufmann AM, Stern PL, Rankin EM et al. (2002) Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res 8:3676–3685

    PubMed  CAS  Google Scholar 

  29. Ferrara A, Nonn M, Sehr P et al. (2003) Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients. J Cancer Res Clin Oncol 129:521–530

    Article  PubMed  CAS  Google Scholar 

  30. Muderspach L, Wilczynski S, Roman L et al. (2000) A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res 6:3406–3416

    PubMed  CAS  Google Scholar 

  31. Steller MA, Gurski KJ, Murakami M et al. (1998) Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res 4(9):2103–2109

    PubMed  CAS  Google Scholar 

  32. van Driel WJ, Ressing ME, Kenter GG et al. (1999) Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a phase I-II trial. Eur J Cancer 35(6):946–952

    Article  PubMed  Google Scholar 

  33. Lin CW, Lee JY, Tsao YP, Shen CP, Lai HC, Chen SL (2002) Oral vaccination with recombinant Listeria monocytogenes expressing human papillomavirus type 16 E7 can cause tumor growth in mice to regress. Int J Cancer 102(6):629–637

    Article  PubMed  CAS  Google Scholar 

  34. Hwu P, Yang JC, Cowherd R et al. (1995) In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res 55(15):3369–3373

    PubMed  CAS  Google Scholar 

  35. Cui Z, Han SJ, Huang L (2004) Coating of mannan on LPD particles containing HPV E7 peptide significantly enhances immunity against HPV-positive tumor. Pharm Res 21:1018–1025

    Article  PubMed  CAS  Google Scholar 

  36. Cui Z, Huang L (2005) Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: Therapeutic effect against cervical cancer. Cancer Immunol Immunother 54(12):1180–1190

    Article  PubMed  CAS  Google Scholar 

  37. Dileo J, Banerjee R, Whitmore M, Nayak JV, Falo LD Jr, Huang L (2003) Lipid-protamine-DNA-mediated antigen delivery to antigen-presenting cells results in enhanced anti-tumor immune responses. Mol Ther 7:640–648

    Article  PubMed  CAS  Google Scholar 

  38. Curtsinger JM, Johnson CM, Mescher MF (2003) CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J Immunol 171(10):5165–5171

    PubMed  CAS  Google Scholar 

  39. den Boer AT, van Mierlo GJ, Fransen MF, Melief CJ, Offringa R, Toes RE (2004) The tumoricidal activity of memory CD8+ T cells is hampered by persistent systemic antigen, but full functional capacity is regained in an antigen-free environment. J Immunol 172(10):6074–6079

    PubMed  Google Scholar 

  40. Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM (1996) Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci USA 93(15):7855–7860

    Article  PubMed  CAS  Google Scholar 

  41. Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30(1):1–7

    Article  PubMed  CAS  Google Scholar 

  42. Blattman JN, Greenberg PD (2004) Cancer immunotherapy: a treatment for the masses. Science 305(5681):200–205

    Article  PubMed  CAS  Google Scholar 

  43. Berzofsky JA, Ahlers JD, Janik J et al. (2004) Progress on new vaccine strategies against chronic viral infections. J Clin Invest 114(4):450–462

    Article  PubMed  CAS  Google Scholar 

  44. Walboomers JM, Jacobs MV, Manos MM et al. (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19

    Article  PubMed  CAS  Google Scholar 

  45. Ong MK, Glantz SA (2004) Cardiovascular health and economic effects of smoke-free workplaces. Am J Med 117(1):32–38

    Article  PubMed  Google Scholar 

  46. Franceschi S (2005) The IARC commitment to cancer prevention: the example of papillomavirus and cervical cancer. Recent Results Cancer Res 166:277–297

    PubMed  Google Scholar 

  47. Kadish AS, Timmins P, Wang Y et al. (2002) Regression of cervical intraepithelial neoplasia and loss of human papillomavirus (HPV) infection is associated with cell-mediated immune responses to an HPV type 16 E7 peptide. Cancer Epidemiol Biomarkers Prev 11:483–488

    PubMed  CAS  Google Scholar 

  48. Hirabayashi K, Yano J, Inoue T et al. (1999) Inhibition of cancer cell growth by polyinosinic-polycytidylic acid/cationic liposome complex: a new biological activity. Cancer Res 59(17):4325–4333

    PubMed  CAS  Google Scholar 

  49. Hemmi H, Takeuchi O, Kawai T et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745

    Article  PubMed  CAS  Google Scholar 

  50. Krieg AM, Yi AK, Matson S et al. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374(6522):546–549

    Article  PubMed  CAS  Google Scholar 

  51. Jacobs BL, Langland JO (1996) When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219(2):339–349

    Article  PubMed  CAS  Google Scholar 

  52. Lindh HF, Lindsay HL, Mayberry BR, Forbes M (1969) Polyinosinic-cytidylic acid complex (poly I:C) and viral infections in mice. Proc Soc Exp Biol Med 132(1):83–87

    PubMed  CAS  Google Scholar 

  53. Tabeta K, Georgel P, Janssen E et al. (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 101(10):3516–3521

    Article  PubMed  CAS  Google Scholar 

  54. Yang L, Carbone DP (2004) Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res 92:13–27

    Article  PubMed  CAS  Google Scholar 

  55. Almand B, Resser JR, Lindman B et al. (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6(5):1755–1766

    PubMed  CAS  Google Scholar 

  56. Gabrilovich DI, Chen HL, Girgis KR et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103

    Article  PubMed  CAS  Google Scholar 

  57. Morelli AE, Larregina AT, Ganster RW et al. (2000) Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway. J Virol 74(20):9617–9628

    Article  PubMed  CAS  Google Scholar 

  58. Muraille E, De Trez C, Pajak B, Torentera FA, De Baetselier P, Leo O, Carlier Y (2003) Amastigote load and cell surface phenotype of infected cells from lesions and lymph nodes of susceptible and resistant mice infected with Leishmania major. Infect Immun 71(5):2704–2715

    Article  PubMed  CAS  Google Scholar 

  59. Coates PT, Barratt-Boyes SM, Zhang L et al. (2003) Dendritic cell subsets in blood and lymphoid tissue of rhesus monkeys and their mobilization with Flt3 ligand. Blood 102(7):2513–2521

    Article  PubMed  CAS  Google Scholar 

  60. Fischer HG, Bonifas U, Reichmann G (2000) Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164(9):4826–4834

    PubMed  CAS  Google Scholar 

  61. Nishi T, Okazaki K, Kawasaki K et al. (2003) Involvement of myeloid dendritic cells in the development of gastric secondary lymphoid follicles in Helicobacter pylori-infected neonatally thymectomized BALB/c mice. Infect Immun 71(4):2153–2162

    Article  PubMed  CAS  Google Scholar 

  62. Blois SM, Alba Soto CD, Tometten M, Klapp BF, Margni RA, Arck PC (2004) Lineage, maturity, and phenotype of uterine murine dendritic cells throughout gestation indicate a protective role in maintaining pregnancy. Biol Reprod 70(4):1018–1023

    Article  PubMed  CAS  Google Scholar 

  63. Turner BC, Hemmila EM, Beauchemin N, Holmes KV (2004) Receptor-dependent coronavirus infection of dendritic cells. J Virol 78(10):5486–5490

    Article  PubMed  CAS  Google Scholar 

  64. Schiavoni G, Mattei F, Sestili P et al. (2002) ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med 196(11):1415–1425

    Article  PubMed  CAS  Google Scholar 

  65. Kruger T, Benke D, Eitner F et al. (2004) Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J Am Soc Nephrol 15(3):613–621

    Article  PubMed  Google Scholar 

  66. Kadowaki N, Antonenko S, Liu YJ (2001) Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c- type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN. J Immunol 166(4):2291–2295

    PubMed  CAS  Google Scholar 

  67. Strayer DR, Carter WA, Brodsky I et al. (1994) A controlled clinical trial with a specifically configured RNA drug, poly(I).poly(C12U), in chronic fatigue syndrome. Clin Infect Dis 18(Suppl 1):S88–95

    PubMed  Google Scholar 

  68. Adams M, Navabi H, Jasani B et al. (2003) Dendritic cell (DC) based therapy for cervical cancer: use of DC pulsed with tumour lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly [I]:poly [C(12)U] (Ampligen R). Vaccine 21(7–8):787–790

    Article  PubMed  CAS  Google Scholar 

  69. Fernando GJ, Khammanivong V, Leggatt GR, Liu WJ, Frazer IH (2002) The number of long-lasting functional memory CD8+ T cells generated depends on the nature of the initial nonspecific stimulation. Eur J Immunol 32(6):1541–1549

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Flow cytometry analyses were completed in the Flow Cytometry and Cell Sorting Facilities in the Environmental Health Science Center at the Oregon State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengrong Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Z., Qiu, F. Synthetic double-stranded RNA poly(I:C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model. Cancer Immunol Immunother 55, 1267–1279 (2006). https://doi.org/10.1007/s00262-005-0114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0114-6

Keywords

Navigation