Skip to main content
Log in

New Insight into the Role of Polyethylene Glycol Acting as Protein Release Modifier in Lipidic Implants

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

It has recently been shown that the addition of polyethylene glycol 6000 (PEG) to lipidic implants fundamentally affects the resulting protein release kinetics and moreover, the underlying mass transport mechanisms (Herrmann, Winter, Mohl, F. Siepmann, & J. Siepmann, J. Control. Release, 2007). However, it is yet unclear in which way PEG acts. It was the aim of this study to elucidate the effect of PEG in a mechanistic manner.

Materials and Methods

rh-interferon α-2a (IFN-α)-loaded, tristearin-based implants containing various amounts of PEG were prepared by compression. Protein and PEG release was monitored in phosphate buffer pH 4.0 and pH 7.4. IFN-α solubility and stability were assessed by reverse phase and size exclusion HPLC, SDS PAGE, fluorescence and FTIR.

Results

Importantly, in presence of PEG IFN-α was drastically precipitated at pH 7.4. In contrast, at pH 4.0 up to a PEG concentration of 20% no precipitation occurred. These fundamental effects of PEG on protein solubility were reflected in the release kinetics of IFN-α from the tristearin implants: At pH 7.4 the protein release rates remained nearly constant over prolonged periods of time, whereas at pH 4.0 high initial bursts and continuously decreasing release rates were observed. Interestingly, it could be shown that IFN-α release was governed by pure diffusion at pH 4.0, irrespective of the PEG content of the matrices. In contrast, at pH 7.4 both—the limited solubility of the protein as well as diffusion through tortuous liquid-filled pores—are dominating.

Conclusions

For the first time it is shown that the release of pharmaceutical proteins can be controlled by an in-situ precipitation within inert matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Herrmann, G. Winter, S. Mohl, F. Siepmann, and J. Siepmann. Mechanisms controlling protein release from lipidic implants: effects of PEG addition. J. Control. Release (2007). http://www.sciencedirect.com/science/journal/01683659.

  2. J. L. Cleland. Protein delivery from biodegradable microspheres. Pharm. Biotechnol. 10:1–43 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. W. R. Gombotz and D. K. Pettit. Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem. 6:332–351 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. J. Siepmann and A. Goepferich. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Deliv. Rev. 48:229–247 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. V. R. Sinha and A. Trehan. Biodegradable microspheres for protein delivery. J. Control. Release 90:261–280 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. R. Bawa, R. A. Siegel, B. Marasca, M. Karel, and R. Langer. An explanation for the controlled release of macromolecules from polymers. J. Control. Release 1:259–267 (1985).

    Article  CAS  Google Scholar 

  7. R. A. Siegel and R. Langer. Controlled release of polypeptides and other macromolecules. Pharm. Res. 1:2–10 (1984).

    Article  Google Scholar 

  8. R. A. Siegel, J. Kost, and R. Langer. Mechanistic studies of macromolecular drug release from macroporous polymers. I. Experiments and preliminary theory concerning completeness of drug release. J. Control. Release 8:223–236 (1989).

    Article  CAS  Google Scholar 

  9. K. Fu, A. M. Klibanov, and R. Langer. Protein stability in controlled-release systems. Nat. Biotech. 18:24–25 (2000).

    Article  CAS  Google Scholar 

  10. M. Morlock, H. Koll, G. Winter, and T. Kissel. Microencapsulation of rh-erythropoietin, using biodegradable poly(D, L-lactide-co-glycolide). Protein stability and the effects of stabilizing excipients. Eur. J. Pharm. Biopharm. 43:29–36 (1997).

    Article  CAS  Google Scholar 

  11. S. P. Schwendeman, M. Cardamone, A. Klibanov, R. Langer, and M. R. Brandon. Stability of proteins and their delivery from biodegradable polymer microspheres. Drugs Pharm. Sci. 77:1–49 (1996).

    CAS  Google Scholar 

  12. M. van de Weert, W. E. Hennink, and W. Jiskoot. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17:1159–1167 (2000).

    Article  PubMed  Google Scholar 

  13. A. Maschke, A. Lucke, W. Vogelhuber, C. Fischbach, T. Appel, T. Blunk, and A. Goepferich. Lipids: an alternative material for protein and peptide release. In A.C.S. Symp. Ser. 79 (Carrier-Based Drug Delivery), 2004, pp. 176–196.

  14. T. Pongjanyakul, N. J. Medlicott, and I. G. Tucker. Melted glyceryl palmitostearate (GPS) pellets for protein delivery. Int. J. Pharm. 271:53–62 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. H. Reithmeier, J. Herrmann, and A. Goepferich. Lipid microparticles as a parenteral controlled release device for peptides. J. Control. Release 73:339–350 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. W. Vogelhuber, E. Magni, M. Mouro, T. Spruss, C. Guse, A. Gazzaniga, and A. Goepferich. Monolithic triglyceride matrices: a controlled-release system for proteins. Pharm. Dev. Technol. 8:71–79 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. P. Y. Wang. Lipids as excipient in sustained release insulin implants. Int. J. Pharm. 54:223–230 (1989).

    Article  CAS  Google Scholar 

  18. S. Mohl and G. Winter. Continuous release of rh-interferon alpha-2a from triglyceride matrices. J. Control. Release 97:67–78 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. R. L. Cleek, K. C. Ting, S. G. Eskin, and A. G. Mikos. Microparticles of poly(DL-lactic-co-glycolic acid)/poly(ethylene glycol) blends for controlled drug delivery. J. Control. Release 48:259–268 (1997).

    Article  CAS  Google Scholar 

  20. W. J. Lin and C. C. Yu. Comparison of protein loaded poly(γ-caprolactone) microparticles prepared by the hot-melt technique. J. Microencapsul. 18:585–592 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. J. W. Jiang and S. P. Schwendeman. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide) and poly(ethylene glycol) microsphere blends. Pharm. Res. 18:878–885 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. J. M. Péan, F. Boury, M. C. Venier-Julienne, P. Menei, J. E. Proust, and J. P. Benoit. Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres? Pharm. Res. 16:1294–1299 (1999).

    Article  PubMed  Google Scholar 

  23. I. J. Castellanos, R. Crespo, and K. Griebenow. Poly(ethylene glycol) as stabilizer and emulsifying agent: a novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres. J. Control. Release 88:135–145 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. S. Mohl. The development of a sustained and controlled release device for pharmaceutical proteins based on lipid implants. PhD thesis, LMU Munich, Munich (2004). Document available from http://edoc.ub.uni-muenchen.de/.

  25. J. M. Vergnaud. Controlled Drug Release of Oral Dosage Forms. Ellis Horwood Limited, Chichester (1993).

    Google Scholar 

  26. J. M. Harris. Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications. Plenum, New York (1992).

    Google Scholar 

  27. A. McPherson. Introduction to protein crystallization. Methods 34:254–265 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. T. Arakawa and S. N. Timasheff. Mechanism of poly(ethylene glycol) interaction with proteins. Biochem. 24:6756–6761 (1985).

    Article  CAS  Google Scholar 

  29. D. H. Atha and K. C. Ingham. Mechanism of precipitation of proteins by polyethylene glycols, analysis in terms of excluded volume. J. Biol. Chem. 256:12108–12117 (1981).

    PubMed  CAS  Google Scholar 

  30. I. L. Shulgin and E. Ruckenstein. Preferential hydration and solubility of proteins in aqueous solutions of polyethylene glycol. Biophys. Chem. 120:188–198 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. B. Shenoy, Y. Wang, W. Shan, A. L. and Margolin. Stability of crystalline proteins. Biotechnol. Bioeng. 73:358–369 (2004).

    Article  Google Scholar 

  32. J. C. Falkner, A. M. Al-Somali, J. A. Jamison, J. Zhang, S. L. Adrianse, R. L. Simpson, M. K. Calabretta, W. Radding, G. N. Phillips, Jr., and V. L. Colvin. Generation of size-controlled, submicrometer protein crystals. Chem. Mater. 17:2679–2686 (2005).

    Article  CAS  Google Scholar 

  33. R. T. Bartus, M. A. Tracy, D. F. Emerich, and S. E. Zale. Sustained delivery of proteins for novel therapeutic proteins. Science 281:1161–1162 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. O. L. Johnson, W. Jaworowicz, J. L. Cleland, L. Bailey, M. Charnis, E. Duenas, C. Wu, D. Shepard, S. Magil, T. Last, A. J. S. Jones, and S. D. Putney. The stabilization and encapsulation of human growth hormone into biodegradable microspheres. Pharm. Res. 14:730–735 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. O. L. Johnson, J. L. Cleland, H. J. Lee, M. Charnis, E. Duenas, W. Jaworowicz, D. Shepard, A. Shihzamani, A. J. S. Jones, and S. D. Putney. A month-long effect from a single injection of microencapsulated human growth hormone. Nature Med. 2:795–799 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. P. van de Wetering, A. T. Metters, R. G. Schoenmakers, and J. A. Jeffrey. Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins. J. Control. Release 102:619–627 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. L. P. Stratton, A. Dong, M. C. Manning, and J. F. Carpenter. Drug delivery matrix containing native protein precipitates suspended in a poloxamer gel. J. Pharm. Sci. 86:1006–1010 (1997).

    Article  PubMed  CAS  Google Scholar 

  38. A. Dong, P. Huang, and W. S. Caughey. Protein secondary structures in water from second derivative amid I infrared spectra. Biochemistry 29:3303–3308 (1990).

    Article  PubMed  CAS  Google Scholar 

  39. V. K. Sharma and D. S. Kalonia. Temperature- and pH-induced multiple partially unfolded states of recombinant human Interferon-α2a: Possible Implications in protein stability. Pharm. Res. 20:1721–1729 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. W. Wang. Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm. 289:1–30 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. Dustrup. Interferon formulations. US Pat. Appl. Publ. 41 (2003).

  42. E. Maeyer and P. Somer. Influence of pH on interferon production and activity. Nature 194:1252–1253 (1962).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Centre de Coopération Franco-Bavarois. We further express our grateful thanks to Roche Diagnostics (Penzberg, Germany) for the supply of interferon α-2a and Sasol (Witten, Germany) for the donation of the lipids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, S., Mohl, S., Siepmann, F. et al. New Insight into the Role of Polyethylene Glycol Acting as Protein Release Modifier in Lipidic Implants. Pharm Res 24, 1527–1537 (2007). https://doi.org/10.1007/s11095-007-9271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9271-y

Key words

Navigation