Skip to main content

Advertisement

Log in

Predicting Effect of Food on Extent of Drug Absorption Based on Physicochemical Properties

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 22 May 2007

Abstract

Purpose

To develop a statistical model for predicting effect of food on the extent of absorption (area under the curve of time–plasma concentration profile, AUC) of drugs based on physicochemical properties.

Materials and Methods

Logistic regression was applied to establish the relationship between the effect of food (positive, negative or no effect) on AUC of 92 entries and physicochemical parameters, including clinical doses used in the food effect study, solubility (pH 7), dose number (dose/solubility at pH 7), calculated Log D (pH 7), polar surface area, total surface area, percent polar surface area, number of hydrogen bond donor, number of hydrogen bond acceptors, and maximum absorbable dose (MAD).

Results

For compounds with MAD ≥ clinical dose, the food effect can be predicted from the dose number category and Log D category, while for compounds with MAD < clinical dose, the food effect can be predicted from the dose number category alone. With cross validation, 74 out of 92 entries (80%) were predicted into the correct category. The correct predictions were 97, 79 and 68% for compounds with positive, negative and no food effect, respectively.

Conclusions

A logistic regression model based on dose, solubility, and permeability of compounds is developed to predict the food effect on AUC. Statistically, solubilization effect of food primarily accounted for the positive food effect on absorption while interference of food with absorption caused negative effect on absorption of compounds that are highly hydrophilic and probably with narrow window of absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Patil, L. Y. Ngo, P. Glue, and J. D. Unadkat. Intestinal absorption of ribavirin is preferentially mediated by the Na+-nucleoside purine (N1) transporter. Pharm. Res. 15:950–952 (1998).

    PubMed  CAS  Google Scholar 

  2. H. Liedholmand and A. Melander. Concomitant food intake can increase the bioavailability of propranolol by transient inhibition of its presystemic primary conjugation. Clin. Pharmacol. Ther. 40:29–36 (1986).

    Article  Google Scholar 

  3. J. J. Leyden. Absorption of minocycline and tetracycline: effect of food, milk and iron. Int. Congr. Symp. Ser.—R. Soc. Med. 95:87–92 (1985).

    CAS  Google Scholar 

  4. D. Brownand and R. Juhl. Decreased bioavailability of digoxacin due to antacids and kaolin-pectin. N. Engl. J. Med. 19:1034–1037 (1976).

    Article  Google Scholar 

  5. J. Dressman. Comparison of canine and human gastrointestinal physiology. Pharm. Res. 3:123–131 (1986).

    CAS  Google Scholar 

  6. T. Kararli. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of human and commonly used laboratory animals. Biopharm. Drug Dispos. 16:351–380 (1995).

    PubMed  CAS  Google Scholar 

  7. D. Fleisher, C. Li, Y. Zhou, L.-H. Pao, and A. Karim. Drug, meal and formulation interactions influencing drug absorption after oral administration: clinical implications. Clin. Pharmacokinet. 36:233–254 (1999).

    PubMed  CAS  Google Scholar 

  8. L. Schmidtand and K. Dalhoff. Food-drug interactions. Drugs 62:1481–1502 (2002).

    Google Scholar 

  9. B. Singh. Effects of food on clinical pharmacokinetics. Clin. Pharmacokinet. 37:213–255 (1999).

    PubMed  CAS  Google Scholar 

  10. Physician Desk Reference Electronic Library, http://www.thomsonhc.com/pdrel/librarian/ND_PR/Pdr Accessed 11/2004 – 02/2006.

  11. ACD/PhysChem Batch, version 9.0. Advanced Chemistry Development, Inc. Toronto, Canada.

  12. The United States Pharmacopeia. Authority of the United States Pharmacopeial Convention, 25th ed. National Publishing, Philadelphia, PA 2004.

    Google Scholar 

  13. Analytical Profiles of Drug Substances. Series editor: K. Florey. Academic, New York (1972–1991).

  14. The Merck Index, 13th ed. Merck Research Laboratories, Rahway, NJ (2001).

  15. USP DI Volume III, Approved Drug Products and Legal Requirements, 26th ed. United States Pharmacopeial Convention, Inc. Rockville, MD (2006).

  16. D. Oh, R. Curl, and G. Amidon. Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model. Pharm. Res. 10:264–270 (1993).

    PubMed  CAS  Google Scholar 

  17. W. Curatolo. Physical chemical properties of oral drug candidates in the discovery and exploratory development settings. Pharm. Sci. Technol. Today 1:387–393 (1998).

    CAS  Google Scholar 

  18. D. Sun, L. X. Yu, M. A. Hussain, D. A. Wall, R. L. Smith, and G. L. Amidon. In vitro testing of drug absorption for drug ‘developability’ assessment: forming an interface between in vitro preclinical data and clinical outcome. Curr. Opin. Drug Discov. Dev. 7:75–85 (2004).

    CAS  Google Scholar 

  19. SAS/STAT® User’s Guide, Version 6, Fourth Edition, Volume 2. Chapter 27, The LOGISTIC procedure, 1071–1126 (1990).

  20. Y. Li. Mechanisms of region-dependent absorption of a weakly basic hiv protease inhibitor, indinavir: clinical ramifications and comparison with nelfinavir, pH. D thesis, University of Michigan, Ann Arbor, MI (2001).

  21. N. Petri, C. Tannergren, D. Rungstad, and H. Lennernaes. Transport characteristics of fexofenadine in the Caco-2 Cell Model. Pharm. Res. 21:1398–1404 (2004).

    PubMed  CAS  Google Scholar 

  22. S. Renand and E. J. Lien. Caco-2 cell permeability vs. human gastro-intestinal absorption: QSAR analysis. Prog. Drug Res. 54:1–23 (2000).

    Google Scholar 

  23. N. A. Kasim, M. Whitehouse, C. Ramachandran, M. Bermejo, H. Lennernas, A. S. Hussain, H. E. Junginger, S. A. Stavchansky, K. K. Midha, V. P. Shah, and G. L. Amidon. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Molecular Pharmaceutics 1:85–96 (2004).

    PubMed  CAS  Google Scholar 

  24. A. J. Humberstone, C. J. H. Porter, and N. W. Charman. A physicochemical basis for the effect of food on the absolute oral bioavailability of halofantrine. J. Pharm. Sci. 85:525–529 (1996).

    PubMed  CAS  Google Scholar 

  25. C.-Y. Wu and L. Z. Benet. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22:11–23 (2005).

    PubMed  CAS  Google Scholar 

  26. J. Fraser and P. Gibson. Mechanisms by which food intake elevates circulating levels of hyaluronan in humans. J. Intern. Med. 258:460–466 (2005).

    PubMed  CAS  Google Scholar 

  27. G. L. Amidon, H. Lennernaes, V. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413–420 (1995).

    PubMed  CAS  Google Scholar 

  28. E. M. Persson, A.-S. Gustafsson, A. S. Carlsson, R. G. Nilsson, L. Knutson, P. Forsell, G. Hanisch, H. Lennernaes, and B. Abrahamsson. The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm. Res. 22:2141–2151 (2005).

    PubMed  CAS  Google Scholar 

  29. N. Ahuja, A. Singh, and B. Singh. Rofecoxib: an update on physicochemical, pharmaceutical, pharmacodynamic and pharmacokinetic aspects. J. Pharm. Pharmacol. 55:859–894 (2003).

    PubMed  CAS  Google Scholar 

  30. E. Lipka, J. M. Hilfinger, C. A. Siersma, Y. Tsume, J. R. Crison, R. E. Ridgewell, and G. L. Amidon. Evaluation of Imiquimod and analogs with respect to their oral delivery potential. Proc. Int. Symp. Control. Release Bioact. Mater. 24:337–338 (1997).

    Google Scholar 

  31. I. D. Cockshott, S. D. Oliver, J. J. Young, K. J. Cooper, and D. C. Jones. The effect of food on the pharmacokinetics of the bicalutamide (‘Casodex’) enantiomers. Biopharm. Drug Dispos. 18:499–507 (1997).

    PubMed  CAS  Google Scholar 

  32. W. N. Charman, M. C. Rogge, A. W. Boddy, and B. M. Berger. Effect of food and a monoglyceride emulsion formulation on danazol bioavailability. J. Clin. Pharmacol. 33:381–386 (1993).

    PubMed  CAS  Google Scholar 

  33. A. Van Peer, R. Woestenborghs, J. Heykants, R. Gasparini, and G. Gauwenbergh. The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects. Eur. J. Clin. Pharmacol. 36:423–426 (1989).

    Google Scholar 

  34. E. Liang, J. Proudfoot, and M. Yazdanian. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Pharm. Res. 17:1168–1174 (2000).

    PubMed  CAS  Google Scholar 

  35. C. Masungi, C. Borremans, B. Willems, J. Mensch, A. van Dijck, P. Augustijns, M. E. Brewster, and M. Noppe. Usefulness of a novel Caco-2 cell perfusion system. I. In vitro prediction of the absorption potential of passively diffused compounds. J. Pharm. Sci. 93:2507–2521 (2004).

    PubMed  CAS  Google Scholar 

  36. E. K. Hussey, K. H. Donn, J. R. Powell, A. P. Lahey, and G. E. Pakes. Albuterol extended-release products: effect of food on the pharmacokinetics of single oral doses of Volmax and Proventil Repetabs in healthy male volunteers. J. Clin. Pharmacol. 31:561–4 (1991).

    PubMed  CAS  Google Scholar 

  37. A. Tronde, B. Norden, H. Marchner, A.-K. Wendel, H. Lennernaes, and U. H. Bengtsson. Pulmonary absorption rate and bioavailability of drugs in vivo in rats: Structure-absorption relationships and physicochemical profiling of inhaled drugs. J. Pharm. Sci. 92:1216–1233 (2003).

    PubMed  CAS  Google Scholar 

  38. J. Fuji, N. Inotsume, and M. Nakano. Effect of food on the bioavailability of bromazepam following oral administration in healthy volunteers. J. Pharmacobio-Dyn. 13:269–271 (1990).

    Google Scholar 

  39. Z. Kopitar, B. Vrhovac, L. Povsic, F. Plavsic, I. Francetic, and J. Urbancic. The effect of food and metoclopramide on the pharmacokinetics and side effects of bromocriptine. Eur. J. Drug Metab. Pharmacokinet. 16:177–181 (1991).

    Article  PubMed  CAS  Google Scholar 

  40. Y. M. Ponce, M. A. C. Perez, V. R. Zaldivar, M. B. Sanz, D. S. Mota, and F. Torrens. Prediction of intestinal epithelial transport of drug in (Caco-2) cell culture from molecular structure using in silico approaches during early drug discovery. Internet Electronic Journal of Molecular Design 4:124–150 (2005).

    CAS  Google Scholar 

  41. B. Reigner, J. Verweij, L. Dirix, J. Cassidy, C. Twelves, D. Allman, E. Weidekamm, B. Roos, L. Banken, M. Utoh, and B. Osterwalder. Effect of food on the pharmacokinetics of capecitabine and its metabolites following oral administration in cancer patients. Clin. Cancer Res. (an official journal of the American Association for Cancer Research) 4:941–948 (1998).

    CAS  Google Scholar 

  42. Bristol-Myers Squibb Internal Database. Bristol-Myers Squibb Co, New York, NY. Accessed 02/2006.

  43. S. Yamashita, E. Hattori, A. Shimada, Y. Endoh, Y. Yamazaki, M. Kataoka, T. Sakane, and H. Sezaki. New methods to evaluate intestinal drug absorption mediated by oligopeptide transporter from in vitro study using Caco-2 cells. Drug Metab. Pharmacokinet. 17:408–415 (2002).

    PubMed  CAS  Google Scholar 

  44. R. M. Menon and W. H. Barr. Comparison of ceftibuten transport across Caco-2 cells and rat jejunum mounted on modified ussing chambers. Biopharm. Drug Dispos. 24:299–308 (2003).

    PubMed  CAS  Google Scholar 

  45. P. V. Desmond, P. J. Harman, N. Gannoulis, M. Kamm, and M. L. Mashford. The effect of an antacid and food on the absorption of cimetidine and ranitidine. J. Pharm. Pharmacol. 42:352–354 (1990).

    PubMed  CAS  Google Scholar 

  46. A. Avdeef, P. Artursson, S. Neuhoff, L. Lazorova, J. Grasjoe, and S. Tavelin. Caco-2 permeability of weakly basic drugs predicted with the Double-Sink PAMPA pKfluxa method. Eur. J. Pharm. Sci. 24:333–349 (2005).

    PubMed  CAS  Google Scholar 

  47. A. Shah, M.-C. Liu, D. Vaughan, and A. H. Heller. Oral bioequivalence of three ciprofloxacin formulations following single-dose administration: 500 mg tablet compared with 500 mg/10 mL or 500 mg/5 mL suspension and the effect of food on the absorption of ciprofloxacin oral suspension. J. Antimicrob. Chemother. 43:49–54 (1999).

    PubMed  CAS  Google Scholar 

  48. N. M. Griffiths, B. H. Hirst, and N. L. Simmons. Active intestinal secretion of the fluoroquinolone antibacterials ciprofloxacin, norfloxacin and pefloxacin; a common secretory pathway? J. Pharmacol. Exp. Ther. 269:496–502 (1994).

    PubMed  CAS  Google Scholar 

  49. K. Laitinen, A. Patronen, P. Harju, E. Loyttyniemi, L. Pylkkanen, T. Kleimola, and K. Perttunen. Timing of food intake has a marked effect on the bioavailability of clodronate. Bone (New York) 27:293–296 (2000).

    CAS  Google Scholar 

  50. J. Raiman, S. Tormalehto, K. Yritys, H. E. Junginger, and J. Monkkonen. Effects of various absorption enhancers on transport of clodronate through Caco-2 cells. Int. J. Pharm. 261:129–136 (2003).

    PubMed  CAS  Google Scholar 

  51. C. Lippert, A. Keung, T. Arumugham, M. Eller, W. Hahne, and S. Weir. The effect of food on the bioavailability of dolasetron mesylate tablets. Biopharm. Drug Dispos. 19:17–19 (1998).

    PubMed  CAS  Google Scholar 

  52. J. Dow, G. F. Di Francesco, and C. Berg. Comparison of the pharmacokinetics of dolasetron and its major active metabolite, reduced dolasetron, in dog. J. Pharm. Sci. 85:685–689 (1996).

    PubMed  CAS  Google Scholar 

  53. J. J. Hanyok. Clinical pharmacokinetics of sotalol. Am. J. Cardiol. 72:19A–26A (1993).

    PubMed  CAS  Google Scholar 

  54. T. D. Bjornsson, W. M. Troetel, and B. P. Imbimbo. Effect of food on the absorption of eptastigmine. Eur. J. Clin. Pharmacol. 54:243–247 (1998).

    PubMed  CAS  Google Scholar 

  55. M. Stoltz, T. Arumugham, C. Lippert, D. Yu, V. Bhargava, M. Eller, and S. Weir. Effect of food on the bioavailability of fexofenadine hydrochloride (MDL 16 455A). Biopharm. Drug Dispos. 18:645–648 (1997).

    PubMed  CAS  Google Scholar 

  56. F. Ingels, B. Beck, M. Oth, and P. Augustijns. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers. Int. J. Pharm. 274:221–232 (2004).

    PubMed  CAS  Google Scholar 

  57. T. Shibuta, N. Inotsume, R. Iwaoku, and M. Nakano. Influence of food on pharmacokinetics and pharmacodynamics of furosemide. Byoin Yakugaku 14:12–16 (1988).

    CAS  Google Scholar 

  58. H. A. Semple, Y. K. Tam, and R. T. Coutts. Hydralazine pharmacokinetics and interaction with food: an evaluation of the dog as an animal model. Pharm. Res. 7:274–279 (1990).

    PubMed  CAS  Google Scholar 

  59. L. X. Yu, A. B. Straughn, P. J. Faustino, Y. Yang, A. Parekh, A. B. Ciavarella, E. Asafu-Adjaye, M. U. Mehta, D. P. Conner, L. J. Lesko, and A. S. Hussain. The effect of food on the relative bioavailability of rapidly dissolving immediate-release solid oral products containing highly soluble drugs. Molecular Pharmaceutics 1:357–362 (2004).

    PubMed  CAS  Google Scholar 

  60. T. Kosoglou, D. J. Kazierad, J. J. Schentag, J. E. Patrick, L. Heimark, E. Radwanski, D. Christopher, B. E. Flannery, and M. B. Affrime. Effect of food on the oral bioavailability of isosorbide-5-mononitrate administered as an extended-release tablet. J. Clin. Pharmacol. 35:151–158 (1995).

    PubMed  CAS  Google Scholar 

  61. K. H. P. Moore, S. Shaw, A. L. Laurent, P. Lloyd, B. Duncan, D. M. Morris, M. J. O’Mara, and G. E. Pakes. Lamivudine/zidovudine as a combined formulation tablet: bioequivalence compared with lamivudine and zidovudine administered concurrently and the effect of food on absorption. J. Clin. Pharmacol. 39:593–605 (1999).

    PubMed  CAS  Google Scholar 

  62. W. D. Hooper, R. G. Dickinson, and M. J. Eadie. Effect of food on absorption of lomefloxacin. Antimicrob. Agents Chemother. 34:1797–1799 (1990).

    PubMed  CAS  Google Scholar 

  63. D. A. Volpe. Permeability classification of representative fluoroquinolones by a cell culture method. AAPS PharmSci 6: e13 (2004).

    Google Scholar 

  64. U. Busch, G. Heinzel, and H. Narjes. Effect of food on pharmacokinetics of meloxicam, a new nonsteroidal anti-inflammatory drug (NSAID). Agents Actions 32:52–53 (1991).

    PubMed  CAS  Google Scholar 

  65. G. Ranaldi, K. Islam, and Y. Sambuy. Epithelial cells in culture as a model for the intestinal transport of antimicrobial agents. Antimicrob. Agents Chemother. 36:1374–1381 (1992).

    PubMed  CAS  Google Scholar 

  66. N. B. Modi, B. Wang, W. T. Hu, and S. K. Gupta. Effect of food on the pharmacokinetics of osmotic controlled-release methylphenidate HCl in healthy subjects. Biopharm. Drug Dispos. 21:23–31 (2000).

    PubMed  CAS  Google Scholar 

  67. J. Bass, K. V. Shepard, J. W. Lee, and J. Hulse. An evaluation of the effect of food on the oral bioavailability of sustained-release morphine sulfate tablets (ORAMORPH SR) after multiple doses. J. Clin. Pharmacol. 32:1003–1007 (1992).

    PubMed  CAS  Google Scholar 

  68. J. Lettieri, R. Vargas, V. Agarwal, and P. Liu. Effect of food on the pharmacokinetics of a single oral dose of moxifloxacin 400 mg in healthy male volunteers. Clin. Pharmacokinet. 40:19–25 (2001).

    PubMed  CAS  Google Scholar 

  69. M. N. Dudley, C. R. Marchbanks, S. C. Flor, and B. Beals. The effect of food or milk on the absorption kinetics of ofloxacin. Eur. J. Clin. Pharmacol. 41:569–571 (1991).

    PubMed  CAS  Google Scholar 

  70. L. D’Angelo, F. De Ponti, F. Crema, M. Caravaggi, and A. Crema. Effect of food on the bioavailability of pidotimod in healthy volunteers. Arzneim.-Forsch. 44:1473–1475 (1994).

    CAS  Google Scholar 

  71. H. Y. Pan, A. R. DeVault, D. Brescia, D. A. Willard, M. E. McGovern, D. B. Whigan, and E. Ivashkiv. Effect of food on pravastatin pharmacokinetics and pharmacodynamics. Int. J. Clin. Pharmacol., Ther., Toxicol. 31:291–294 (1993).

    CAS  Google Scholar 

  72. M. A. H. Levine, S. E. Walker, and T. W. Paton. The effect of food and sucralfate on the bioavailability of S(+) and R(−) enantiomers of ibuprofen. J. Clin. Pharmacol. 32:1110–1114 (1992).

    PubMed  CAS  Google Scholar 

  73. F. Faassen, G. Vogel, H. Spanings, and H. Vromans. Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs. Int. J. Pharm. 263:113–122 (2003).

    PubMed  CAS  Google Scholar 

  74. L. I. Harrison, D. J. Riedel, K. E. Armstrong, M. B. Goldlust, and B. P. Ekholm. Effect of food on salsalate absorption. Ther. Drug Monit. 14:87–91 (1992).

    PubMed  CAS  Google Scholar 

  75. G. R. Granneman and D. Mukherjee. The effect of food on the bioavailability of temafloxacin. A review of 3 studies. Clin. Pharmacokinet. 22:48–56 (1992).

    Article  PubMed  CAS  Google Scholar 

  76. D. R. Doose, S. A. Walker, L. G. Gisclon, and R. K. Nayak. Single-dose pharmacokinetics and effect of food on the bioavailability of topiramate, a novel antiepileptic drug. J. Clin. Pharmacol. 36:884–891 (1996).

    PubMed  CAS  Google Scholar 

  77. D. Riendeau, M. D. Percival, C. Brideau, S. Charleson, D. Dube, D. Ethier, J. P. Falgueyret, R. W. Friesen, R. Gordon, G. Greig, J. Guay, J. Mancini, M. Ouellet, E. Wong, L. Xu, S. Boyce, D. Visco, Y. Girard, P. Prasit, R. Zamboni, I. W. Rodger, M. Gresser, A. W. Ford-Hutchinson, R. N. Young, and C. C. Chan. Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively inhibit cyclooxygenase-2. J. Pharmacol. Exp. Ther. 296:558–566 (2001).

    PubMed  CAS  Google Scholar 

  78. M. Hashiguchi, H. Ogata, A. Maeda, Y. Hirashima, S. Ishii, Y. Mori, T. Amamoto, T. Handa, N. Otsuka, et al. No effect of high-protein food on the stereoselective bioavailability and pharmacokinetics of verapamil. J. Clin. Pharmacol. 36:1022–1028 (1996).

    PubMed  CAS  Google Scholar 

  79. L. A. Nazareno, A. A. Holazo, R. Limjuco, S. Passe, S. K. Twardy, B. Min, and J. W. Massarella. The effect of food on pharmacokinetics of zalcitabine in HIV-positive patients. Pharm. Res. 12:1462–1465 (1995).

    PubMed  CAS  Google Scholar 

  80. E. J. Seaber, R. W. Peck, D. A. Smith, J. Allanson, N. R. Hefting, J. J. Van Lier, F. A. E. Sollie, J. Wemer, and J. H. G. Jonkman. The absolute bioavailability and effect of food on the pharmacokinetics of zolmitriptan in healthy volunteers. Br. J. Clin. Pharmacol. 46:433–439 (1998).

    PubMed  CAS  Google Scholar 

  81. J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick, and J. R. Grove. MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J. Pharm. Sci. 88:28–33 (1999).

    PubMed  CAS  Google Scholar 

  82. M. V. S. Varma, K. Sateesh, and R. Panchagnula. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Molecular Pharmaceutics 2:12–21 (2005).

    PubMed  CAS  Google Scholar 

  83. G. E. Chittick, C. Gillotin, J. A. McDowell, Y. Lou, K. D. Edwards, W. T. Prince, and D. S. Stein. Abacavir: absolute bioavailability, bioequivalence of three oral formulations, and effect of food. Pharmacotherapy 19:932–942 (1999).

    PubMed  CAS  Google Scholar 

  84. G. Merino, A. I. Alvarez, J. G. Prieto, and R. B. Kim. The anthelmintic agent albendazole does not interact with P-glycoprotein. Drug Metab. Dispos. 30:365–369 (2002).

    PubMed  CAS  Google Scholar 

  85. X. Meng, P. Mojaverian, M. Doedee, E. Lin, I. Weinryb, S. T. Chiang, and P. R. Kowey. Bioavailability of amiodarone tablets administered with and without food in healthy subjects. cAm. J. Cardiol. 87:432–435 (2001).

    PubMed  CAS  Google Scholar 

  86. R. Dixon, A. L. Pozniak, H. M. Watt, P. Rolan, and J. Posner. Single-dose and steady-state pharmacokinetics of a novel microfluidized suspension of atovaquone in human immunodeficiency virus-seropositive patients. Antimicrob. Agents Chemother. 40:556–560 (1996).

    PubMed  CAS  Google Scholar 

  87. H. Emori, S. Yokohama, and T. Nishihata. Small intestinal absorption of bropirimine in rats and effect of bile salt on the absorption. J. Pharm. Pharmacol. 47:487–492 (1995).

    PubMed  CAS  Google Scholar 

  88. H. Emori, K. Yamamoto, S. Yokohama, and T. Nishihata. Bioavailability of bropirimine 250 mg tablet in dogs: effect of food. J. Pharm. Pharmacol. 47:822–826 (1995).

    PubMed  CAS  Google Scholar 

  89. H. Saitoh, B. J. Aungst, M. Tohyama, Y. Hatakeyama, K. Ohwada, M. Kobayashi, H. Fujisaki, and K. Miyazaki. In vitro permeation of b-lactam antibiotics across rat jejunum and its correlation with oral bioavailability in humans. Br. J. Clin. Pharmacol. 54:445–448 (2002).

    PubMed  CAS  Google Scholar 

  90. S. K. Paulson, M. B. Vaughn, S. M. Jessen, Y. Lawal, C. J. Gresk, B. Yan, T. J. Maziasz, C. S. Cook, and A. Karim. Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. J. Pharmacol. Exp. Ther. 297:638–645 (2001).

    PubMed  CAS  Google Scholar 

  91. J. McEwen, G. Strauch, P. Perles, G. Pritchard, T. E. Moreland, J. Necciari, and J. P. Dickinson. Clopidogrel bioavailability: absence of influence of food or antacids. Semin. Thromb. Hemost. 25:47–50 (1999).

    PubMed  CAS  Google Scholar 

  92. A. Nordqvist, J. Nilsson, T. Lindmark, A. Eriksson, P. Garberg, and M. Kihlen. A general model for prediction of Caco-2 cell permeability. QSAR & Combinatorial Science 23:303–310 (2004).

    CAS  Google Scholar 

  93. D. G. Blanchett, J. A. Green, A. Nara, R. Pospisil, R. C. Jarvis, R. J. Kasmer, D. A. Boyle, M. J. Cyronak, and C. N. Corder. The effect of food on pharmacokinetics and pharmacodynamics of fenoldopam in class III heart failure. Clin. Pharmacol. Ther. 49:449–456 (1991).

    Article  PubMed  CAS  Google Scholar 

  94. A. Clancy, J. Locke-Haydon, R. J. Cregeen, M. Ireson, and J. Ziemniak. Effect of concomitant food intake on absorption kinetics of fenoldopam (SK&F 82526) in healthy volunteers. Eur. J. Clin. Pharmacol. 32:103–106 (1987).

    PubMed  CAS  Google Scholar 

  95. J. Lavelle, S. Follansbee, C. B. Trapnell, W. C. Buhles, K. G. Griffy, D. Jung, A. Dorr, and J. Connor. Effect of food on the relative bioavailability of oral ganciclovir. J. Clin. Pharmacol. 36:238–241 (1996).

    PubMed  CAS  Google Scholar 

  96. K. A. Milton, G. Edwards, S. A. Ward, M. L. E. Orme, and A. M. Breckenridge. Pharmacokinetics of halofantrine in man: effects of food and dose size. Br. J. Clin. Pharmacol. 28:71–77 (1989).

    PubMed  CAS  Google Scholar 

  97. R. L. Williams, J. Mordenti, R. A. Upton, E. T. Lin, W. L. Gee, C. D. Blume, and L. Z. Benet. Effects of formulation and food on the absorption of hydrochlorothiazide and triamterene or amiloride from combination diuretic products. Pharm. Res. 4:348–352 (1987).

    PubMed  CAS  Google Scholar 

  98. I. Soria, P. Myhre, V. Horton, P. Ellefson, S. McCarville, K. Schmitt, and M. Owens. Effect of food on the pharmacokinetics and bioavailability of oral imiquimod relative to a subcutaneous dose. Int. J. Clin. Pharmacol. Ther. 38:476–481 (2000).

    PubMed  CAS  Google Scholar 

  99. P. J. D. Kuang, C. Yeh, H. Haddix, M. Hesney, V. Hoagland, W. D. Ju, S. J. Justice, B. Osborne, A. T. Sterrett, J. A. Stone, E. Woolf, and S. Waldman. Single-dose pharmacokinetics of indinavir and the effect of food. Antimicrob. Agents Chemother. 42:1308 (1998).

    Google Scholar 

  100. N. N. Vachharajani, W. C. Shyu, D. S. Greene, and H. D. Uderman. Effects of food on the pharmacokinetics of irbesartan/hydrochlorothiazide combination tablet. Clin. Drug Investig. 16:399–404 (1998).

    CAS  Google Scholar 

  101. A. Avdeef, P. E. Nielsen, and O. Tsinman. PAMPA—a drug absorption in vitro model 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates. Eur. J. Pharm. Sci. 22:365–374 (2004).

    PubMed  CAS  Google Scholar 

  102. D. Rosillon, A. Stockis, G. Poli, D. Acerbi, R. Lins, and B. Jeanbaptiste. Food effect on the oral bioavailability of Manidipine: single dose, randomized, crossover study in healthy male subjects. Eur. J. Drug Metab. Pharmacokinet. 23:197–202 (1998).

    Article  PubMed  CAS  Google Scholar 

  103. C. Crevoisier, J. Handschin, J. Barre, D. Roumenov, and C. Kleinbloesem. Food increases the bioavailability of mefloquine. Eur. J. Clin. Pharmacol. 53:135–139 (1997).

    PubMed  CAS  Google Scholar 

  104. A. Karim, L. F. Rozek, M. E. Smith, and K. G. Kowalski. Effects of food and antacid on oral absorption of misoprostol, a synthetic prostaglandin E1 analog. J. Clin. Pharmacol. 29:439–443 (1989).

    PubMed  CAS  Google Scholar 

  105. D. S. Greene and R. H. Barbhaiya. Clinical pharmacokinetics of nefazodone. Clin. Pharmacokinet. 33: 260–275 (1997).

    Google Scholar 

  106. S. M. Abdel-Rahman and G. L. Kearns. Single-dose pharmacokinetics of a pleconaril (VP63843) oral solution and effect of food. Antimicrob. Agents Chemother. 42:2706–2709 (1998).

    PubMed  CAS  Google Scholar 

  107. S. M. Abdel-Rahman and G. L. Kearns. Single oral dose escalation pharmacokinetics of pleconaril (VP 63843) capsules in adults. J. Clin. Pharmacol. 39:613–618 (1999).

    PubMed  CAS  Google Scholar 

  108. B. J. Aungst, N. H. Nguyen, J. P. Bulgarelli, and K. Oates-Lenz. The influence of donor and reservoir additives on Caco-2 permeability and secretory transport of HIV protease inhibitors and other lipophilic compounds. Pharm. Res. 17:1175–1180 (2000).

    PubMed  CAS  Google Scholar 

  109. J. Alsenz and E. Haenel. Development of a 7-day, 96-well Caco-2 permeability assay with high-throughput direct UV compound analysis. Pharm. Res. 20:1961–1969 (2003).

    PubMed  CAS  Google Scholar 

  110. R. A. Ronfeld, K. D. Wilner, and B. A. Baris. Sertraline: chronopharmacokinetics and the effect of coadministration with food. Clin. Pharmacokinet. 32:50–55 (1997).

    PubMed  CAS  Google Scholar 

  111. J. Shah, A. Fratis, D. Ellis, S. Murakami, and P. Teitelbaum. Effect of food and antacid on absorption of orally administered ticlopidine hydrochloride. J. Clin. Pharmacol. 30:733–736 (1990).

    PubMed  CAS  Google Scholar 

  112. J. B. Lecaillon, J. Godbillon, J. Campestrini, C. Naquira, L. Miranda, R. Pacheco, R. Mull, and A. A. Poltera. Effect of food on the bioavailability of triclabendazole in patients with fascioliasis. Br. J. Clin. Pharmacol. 45:601–604 (1998).

    PubMed  CAS  Google Scholar 

  113. B. A. Hamelin, S. Allard, L. Laplante, J. Miceli, K. D. Wilner, J. Tremblay, and M. LeBel. The effect of timing of a standard meal on the pharmacokinetics and pharmacodynamics of the novel atypical antipsychotic agent ziprasidone. Pharmacotherapy 18:9–15 (1998).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the following colleagues at Bristol-Myers Squibb for providing data and useful discussion: B. Vig, N. Mathias S. Lawrence, M. Fakes, S. Badawy, F. Zhao, S. Varia, M. Zheng, K. He, V. Rao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Hui Gu.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11095-007-9337-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, CH., Li, H., Levons, J. et al. Predicting Effect of Food on Extent of Drug Absorption Based on Physicochemical Properties. Pharm Res 24, 1118–1130 (2007). https://doi.org/10.1007/s11095-007-9236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9236-1

Key words

Navigation