Skip to main content

Advertisement

Log in

Use of Physiologically Based Pharmacokinetic Modeling for Predicting Drug–Food Interactions: Recommendations for Improving Predictive Performance of Low Confidence Food Effect Models

  • Research Article
  • Theme: Use of PBPK Modeling to Inform Clinical Decisions: Current Status of Prediction of Drug-Food Interactions
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Food can alter drug absorption and impact safety and efficacy. Besides conducting clinical studies, in vitro approaches such as biorelevant solubility and dissolution testing and in vivo dog studies are typical approaches to estimate a drug’s food effect. The use of physiologically based pharmacokinetic models has gained importance and is nowadays a standard tool for food effect predictions at preclinical and clinical stages in the pharmaceutical industry. This manuscript is part of a broader publication from the IQ Consortium’s food effect physiologically based pharmacokinetic model (PBPK) modeling working group and complements previous publications by focusing on cases where the food effect was predicted with low confidence. Pazopanib-HCl, trospium-Cl, and ziprasidone-HCl served as model compounds to provide insights into why several food effect predictions failed in the first instance. Furthermore, the manuscript depicts approaches whereby PBPK-based food effect predictions may be improved. These improvements should focus on the PBPK model functionality, especially better reflecting fasted- and fed-state gastric solubility, gastric re-acidification, and complex mechanisms related to gastric emptying of drugs. For improvement of in vitro methodologies, the focus should be on the development of more predictive solubility, supersaturation, and precipitation assays. With regards to the general PBPK modeling methodology, modelers should account for the full solubility profile when modeling ionizable compounds, including common ion effects, and apply a straightforward strategy to account for drug precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fleisher D, Li C, Zhou Y, Pao LH, Karim A. Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical implications. Clin Pharmacokinet. 1999;36(3):233–54.

    Article  CAS  PubMed  Google Scholar 

  2. FDA. Assessing the effects of food on drugs in INDs and NDAs — clinical pharmacology considerations guidance for industry. 2019. https://www.fda.gov/media/121313/download

  3. Li M, Zhao P, Pan Y, Wagner C. Predictive performance of physiologically based pharmacokinetic models for the effect of food on oral drug absorption: current status. CPT Pharmacometrics Syst Pharmacol. 2018;7(2):82–9.

    Article  CAS  PubMed  Google Scholar 

  4. Emami Riedmaier A, DeMent K, Huckle J, Bransford P, Stillhart C, Alluri R, et al. Use of PBPK modeling for predicting drug-food interactions: an industry perspective. AAPS J. 2020;22(123):1–15.

    Google Scholar 

  5. Pepin X, Huckle JE, Alluri RV, Basu S, Dodd S, Parrott N, et al. Understanding mechanisms of food effect and developing reliable PBPK models using a middle-out approach. AAPS J. 2021;23:12.

    Article  PubMed  Google Scholar 

  6. Deng Y, Sychterz C, Suttle AB, Dar MM, Bershas D, Negash K, et al. Bioavailability, metabolism and disposition of oral pazopanib in patients with advanced cancer. Xenobiotica. 2013;43(5):443–53.

    Article  CAS  PubMed  Google Scholar 

  7. Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM, et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15(12):4220–7.

    Article  CAS  PubMed  Google Scholar 

  8. FDA. Clinical Pharmacology and Biopharmaceutics review for Votrient (NDA 22-465). 2009. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022465s000_clinpharmr.pdf

  9. Heath EI, Chiorean EG, Sweeney CJ, Hodge JP, Lager JJ, Forman K, et al. A phase I study of the pharmacokinetic and safety profiles of oral pazopanib with a high-fat or low-fat meal in patients with advanced solid tumors. Clin Pharmacol Ther. 2010;88(6):818–23.

    Article  CAS  PubMed  Google Scholar 

  10. Jede C, Wagner C, Kubas H, Weigandt M, Weber C, Lecomte M, et al. Improved prediction of in vivo supersaturation and precipitation of poorly soluble weakly basic drugs using a biorelevant bicarbonate buffer in a gastrointestinal transfer model. Mol Pharm. 2019;16(9):3938–47.

    Article  CAS  PubMed  Google Scholar 

  11. Hogan DL, Ainsworth MA, Isenberg JI. Review article: gastroduodenal bicarbonate secretion. Aliment Pharmacol Ther. 1994;8(5):475–88.

    Article  CAS  PubMed  Google Scholar 

  12. Doroshyenko O, Jetter A, Odenthal K, Fuhr U. Clinical pharmacokinetics of trospium chloride. Clin Pharmacokinet. 2005;44(7):701–20.

    Article  CAS  PubMed  Google Scholar 

  13. Schladitz-Keil G, Spahn H, Mutschler E. Determination of the bioavailability of the quaternary compound trospium chloride in man from urinary excretion data. Arzneimittel-Forschung. 1986;36(6):984–7.

    CAS  PubMed  Google Scholar 

  14. FDA. Clinical Pharmacology and Biopharmaceutics review for Sanctura (NDA 21-595). 2004. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/21-595_Sanctura_BioPharmr_P1.pdf

  15. FDA. Clinical Pharmacology and Biopharmaceutics review for Sanctura XR (NDA 22-103). 2007. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/022103s000_ClinPharmR.pdf

  16. Heinen CA, Reuss S, Amidon GL, Langguth P. Ion pairing with bile salts modulates intestinal permeability and contributes to food–drug interaction of BCS class III compound trospium chloride. Mol Pharm. 2013;10(11):3989–96.

    Article  CAS  PubMed  Google Scholar 

  17. Tadken T, Weiss M, Modess C, Wegner D, Roustom T, Neumeister C, et al. Trospium chloride is absorbed from two intestinal “absorption windows” with different permeability in healthy subjects. Int J Pharm. 2016;515(1-2):367–73.

    Article  CAS  PubMed  Google Scholar 

  18. Radwan A, Amidon GL, Langguth P. Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: the importance of viscosity: mechanism of food effect for BCS class III product. Biopharm Drug Dispos. 2012;33(7):403–16.

    Article  CAS  PubMed  Google Scholar 

  19. Miceli JJ, Glue P, Alderman J, Wilner K. The effect of food on the absorption of oral ziprasidone. Psychopharmacol Bull. 2007;40(3):58–68.

    PubMed  Google Scholar 

  20. FDA. Clinical Pharmacology and Biopharmaceutics review for Geodon (NDA 20-825). 2004. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2001/20-825_Geodan.cfm

  21. FDA. Approved label for Geodon. 2008. p. Revised June 2008. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020825s035,020919s023lbl.pdf

  22. Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharm Res. 1997;14(6):763–6.

    Article  CAS  PubMed  Google Scholar 

  23. Sutton S, Nause R, Gandelman K. The impact of gastric pH, volume, and emptying on the food effect of ziprasidone oral absorption. AAPS J. 2017;19(4):1084–90.

    Article  CAS  PubMed  Google Scholar 

  24. GSK. An open-label, two-period, randomized, crossover study to evaluate the effect of food on the pharmacokinetics of single doses of pazopanib in cancer subjects (food-effect results only) In: Register G-CS, editor. 2007. https://s3.amazonaws.com/ctr-gsk-7381/VEG10005/3ac4a918-ecb5-4e42-90e9-aaf01a451734/05e47103-37ae-4f2e-a3d1-c3f17953e1f1/gsk-veg10005-clinical-study-report-redact-v1.pdf

  25. Zhang R, Yuan G, Li R, Liu X, Wei C, Wang B, et al. Pharmacokinetic and bioequivalence studies of trospium chloride after a single-dose administration in healthy Chinese volunteers. Arzneimittelforschung. 2012;62(05):247–51.

    Article  CAS  PubMed  Google Scholar 

  26. Gandelman K, Alderman JA, Glue P, Lombardo I, LaBadie RR, Versavel M, et al. The impact of calories and fat content of meals on oral ziprasidone absorption: a randomized, open-label, crossover trial. J Clin Psychiatry. 2009;70(1):58–62.

    Article  CAS  PubMed  Google Scholar 

  27. Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 1997;25:3–14.

    Article  Google Scholar 

  28. Malagelada JR, Longstreth GF, Summerskill WH, Go VL. Measurement of gastric functions during digestion of ordinary solid meals in man. Gastroenterology. 1976;70(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  29. Koziolek M, Schneider F, Grimm M, Modebeta C, Seekamp A, Roustom T, et al. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies. J Control Release. 2015;220(Pt A):71–8.

    Article  CAS  PubMed  Google Scholar 

  30. Abebe Bayew T, Weiss M, Modess C, Roustom T, Tadken T, Wegner D, et al. Effects of the P-glycoprotein inhibitor clarithromycin on the pharmacokinetics of intravenous and oral trospium chloride: a 4-way crossover drug-drug interaction study in healthy subjects. J Clin Pharmacol. 2019;59(10):1319–30.

    Article  PubMed  CAS  Google Scholar 

  31. Akiyama Y, Ito S, Fujita T, Sugano K. Prediction of negative food effect induced by bile micelle binding on oral absorption of hydrophilic cationic drugs. Eur J Pharm Sci. 2020;155:105543.

    Article  CAS  PubMed  Google Scholar 

  32. Miller JM, Beig A, Krieg BJ, Carr RA, Borchardt TB, Amidon GE, et al. The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Mol Pharm. 2011;8(5):1848–56.

    Article  CAS  PubMed  Google Scholar 

  33. Sugano K. Estimation of effective intestinal membrane permeability considering bile micelle solubilisation. Int J Pharm. 2009;368(1-2):116–22.

    Article  CAS  PubMed  Google Scholar 

  34. Kleberg K, Jacobsen J, Mullertz A. Characterising the behaviour of poorly water soluble drugs in the intestine: application of biorelevant media for solubility, dissolution and transport studies. J Pharm Pharmacol. 2010;62(11):1656–68.

    Article  CAS  PubMed  Google Scholar 

  35. O'Reilly JR, Corrigan OI, O'Driscoll CM. The effect of mixed micellar systems, bile salt/fatty acids, on the solubility and intestinal absorption of clofazimine (B663) in the anaesthetised rat. Int J Pharm. 1994;109(2):147–54.

    Article  CAS  Google Scholar 

  36. Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85.

    Article  CAS  PubMed  Google Scholar 

  37. Ehehalt R, Braun A, Karner M, Füllekrug J, Stremmel W. Phosphatidylcholine as a constituent in the colonic mucosal barrier-physiological and clinical relevance. Biochim Biophys Acta. 2010;1801(9):983–93.

    Article  CAS  PubMed  Google Scholar 

  38. Shen H, Howles P, Tso P. From interaction of lipidic vehicles with intestinal epithelial cell membranes to the formation and secretion of chylomicrons. Adv Drug Deliv Rev. 2001;50(Suppl 1):S103–25.

    Article  CAS  PubMed  Google Scholar 

  39. Charman WN, Porter CJH, Mithani S, Dressman JB. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269–82.

    Article  CAS  PubMed  Google Scholar 

  40. Lin H, Gebhardt M, Bian S, Kwon KA, Shim CK, Chung SJ, et al. Enhancing effect of surfactants on fexofenadine.HCl transport across the human nasal epithelial cell monolayer. Int J Pharm. 2007;330(1-2):23–31.

    Article  CAS  PubMed  Google Scholar 

  41. Schiff ER, Small NC, Dietschy JM. Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J Clin Investig. 1972;51(6):1351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arenson DR, Qi H, inventors; Pfizer Inc., assignee. Ziprasidone suspension. USA patent US 7,175,855 B1 2007 13/02/07.

  43. Miceli JJ, Wilner KD, Swan SK, Tensfeldt TG. Pharmacokinetics, safety, and tolerability of intramuscular ziprasidone in healthy volunteers. J Clin Pharmacol. 2005;45(6):620–30.

    Article  CAS  PubMed  Google Scholar 

  44. Ferrua MJ, Singh RP. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J Food Sci. 2010;75(7):R151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koziolek M, Grimm M, Schneider F, Jedamzik P, Sager M, Kühn JP, et al. Navigating the human gastrointestinal tract for oral drug delivery: uncharted waters and new frontiers. Adv Drug Deliv Rev. 2016;101:75–88.

    Article  CAS  PubMed  Google Scholar 

  46. Grimm M, Scholz E, Koziolek M, Kuhn JP, Weitschies W. Gastric water emptying under fed state clinical trial conditions is as fast as under fasted conditions. Mol Pharm. 2017;14(12):4262–71.

    Article  CAS  PubMed  Google Scholar 

  47. Pal A, Brasseur JG, Abrahamsson B. A stomach road or "Magenstrasse" for gastric emptying. J Biomech. 2007;40(6):1202–10.

    Article  PubMed  Google Scholar 

  48. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.

    Article  CAS  PubMed  Google Scholar 

  49. Biorelevant.com homepage [Available from: https://biorelevant.com/Fed_Gastric_Dissolution_Media/

  50. Collins PJ, Houghton LA, Read NW, Horowitz M, Chatterton BE, Heddle R, et al. Role of the proximal and distal stomach in mixed solid and liquid meal emptying. Gut. 1991;32(6):615–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weitschies W, Friedrich C, Wedemeyer RS, Schmidtmann M, Kosch O, Kinzig M, et al. Bioavailability of amoxicillin and clavulanic acid from extended release tablets depends on intragastric tablet deposition and gastric emptying. Eur J Pharm Biopharm. 2008;70(2):641–8.

    Article  CAS  PubMed  Google Scholar 

  52. Weitschies W, Wedemeyer RS, Kosch O, Fach K, Nagel S, Soderlind E, et al. Impact of the intragastric location of extended release tablets on food interactions. J Control Release. 2005;108(2-3):375–85.

    Article  CAS  PubMed  Google Scholar 

  53. Newton JM. Gastric emptying of multi-particulate dosage forms. Int J Pharm. 2010;395(1-2):2–8.

    Article  CAS  PubMed  Google Scholar 

  54. Goetze O, Steingoetter A, Menne D, van der Voort IR, Kwiatek MA, Boesiger P, et al. The effect of macronutrients on gastric volume responses and gastric emptying in humans: a magnetic resonance imaging study. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G11–7.

    Article  CAS  PubMed  Google Scholar 

  55. Grimm M, Koziolek M, Saleh M, Schneider F, Garbacz G, Kuhn JP, et al. Gastric emptying and small bowel water content after administration of grapefruit juice compared to water and isocaloric solutions of glucose and fructose: a four-way crossover MRI pilot study in healthy subjects. Mol Pharm. 2018;15(2):548–59.

    Article  CAS  PubMed  Google Scholar 

  56. Houghton LA, Hickson F, Read NW. Effect of food consistency on gastric emptying in man. Gut. 1987;28(12):1584–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Koziolek M, Grimm M, Garbacz G, Kuhn JP, Weitschies W. Intragastric volume changes after intake of a high-caloric, high-fat standard breakfast in healthy human subjects investigated by MRI. Mol Pharm. 2014;11(5):1632–9.

    Article  CAS  PubMed  Google Scholar 

  58. Marciani L, Pritchard SE, Hellier-Woods C, Costigan C, Hoad CL, Gowland PA, et al. Delayed gastric emptying and reduced postprandial small bowel water content of equicaloric whole meal bread versus rice meals in healthy subjects: novel MRI insights. Eur J Clin Nutr. 2013;67(7):754–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fuchs A, Leigh M, Kloefer B, Dressman JB. Advances in the design of fasted state simulating intestinal fluids: FaSSIF-V3. Eur J Pharm Biopharm. 2015;94:229–40.

    Article  CAS  PubMed  Google Scholar 

  60. Soderlind E, Karlsson E, Carlsson A, Kong R, Lenz A, Lindborg S, et al. Simulating fasted human intestinal fluids: understanding the roles of lecithin and bile acids. Mol Pharm. 2010;7(5):1498–507.

    Article  PubMed  CAS  Google Scholar 

  61. Al-Gousous J, Salehi N, Amidon GE, Ziff RM, Langguth P, Amidon GL. Mass transport analysis of bicarbonate buffer: effect of the CO 2 – H 2 CO 3 hydration–dehydration kinetics in the fluid boundary layer and the apparent effective p K a controlling dissolution of acids and bases. Mol Pharm. 2019;16(6):2626–35.

    Article  CAS  PubMed  Google Scholar 

  62. Amaral Silva D, Al-Gousous J, Davies NM, Bou Chacra N, Webster GK, Lipka E, et al. Simulated, biorelevant, clinically relevant or physiologically relevant dissolution media: the hidden role of bicarbonate buffer. Eur J Pharm Biopharm. 2019;142:8–19.

    Article  CAS  PubMed  Google Scholar 

  63. Krieg BJ, Taghavi SM, Amidon GL, Amidon GE. In vivo predictive dissolution: comparing the effect of bicarbonate and phosphate buffer on the dissolution of weak acids and weak bases. J Pharm Sci. 2015;104(9):2894–904.

    Article  CAS  PubMed  Google Scholar 

  64. Garbacz G, Kolodziej B, Koziolek M, Weitschies W, Klein S. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds. Eur J Pharm Sci. 2014;51:224–31.

    Article  CAS  PubMed  Google Scholar 

  65. Kostewicz ES, Wunderlich M, Brauns U, Becker R, Bock T, Dressman JB. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol. 2004;56(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  66. O'Dwyer PJ, Litou C, Box KJ, Dressman JB, Kostewicz ES, Kuentz M, et al. In vitro methods to assess drug precipitation in the fasted small intestine - a PEARRL review. J Pharm Pharmacol. 2019;71:536–56.

    Article  CAS  PubMed  Google Scholar 

  67. Carlert S, Palsson A, Hanisch G, von Corswant C, Nilsson C, Lindfors L, et al. Predicting intestinal precipitation-a case example for a basic BCS class II drug. Pharm Res. 2010;27(10):2119–30.

    Article  CAS  PubMed  Google Scholar 

  68. Mann J, Dressman J, Rosenblatt K, Ashworth L, Muenster U, Frank K, et al. Validation of dissolution testing with biorelevant media: an OrBiTo study. Mol Pharm. 2017;14(12):4192–201.

    Article  CAS  PubMed  Google Scholar 

  69. FDA. Chemistry review for Votrient (NDA 22-465). 2009. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022465s000_ChemR.pdf

  70. Drugbank. Pazopanib. 2012. p. https://go.drugbank.com/drugs/DB06589

  71. GSK. An open-label, two-part study to characterize the pharmacokinetics of a single intravenous dose of pazopanib (GW786034) and the absorption, distribution, metabolism and elimination of a single oral [14C] labeled dose of pazopanib in subjects with solid tumor malignancies: final report. In: Register G-CS, editor. 2009. https://s3.amazonaws.com/ctr-gsk-7381/VEG10004/95aab286-8399-4dd6-bd42-48bea4cc216e/c90d2a8d-138f-4c28-8e5f-d37a5219d5f9/veg10004-clinical-study-report-redact-v02-v1.pdf

  72. FDA. Chemistry review for Sanctura XR (NDA 22-103). 2007. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/022103s000_ChemR.pdf

  73. Skořepová E, Čejka J, Hušák M, Eigner V, Rohlíček J, Šturc A, et al. Trospium chloride: unusual example of polymorphism based on structure disorder. Cryst Growth Des. 2013;13(12):5193–203.

    Article  CAS  Google Scholar 

  74. Mercolini L, Mandrioli R, Protti M, Conca A, Albers L, Raggi M. Dried blood spot testing: a novel approach for the therapeutic drug monitoring of ziprasidone-treated patients. Bioanalysis. 2014;6(11):1487–95.

    Article  CAS  PubMed  Google Scholar 

  75. Hotha KK, Bharathi DV, Kumar SS, Reddy YN, Chatki PK, Ravindranath LK, et al. Determination of the quaternary ammonium compound trospium in human plasma by LC-MS/MS: application to a pharmacokinetic study. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(13-14):981–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Julian Semeraro, Sabrina Wacker, and Melanie Schneider (Merck KGaA) as well as Amy Dai and Varsha Dhamankar (Vertex) for conducting the in vitro experiments for the model compounds used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wagner.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Guest Editor: Filippos Kesisoglou

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, C., Kesisoglou, F., Pepin, X.J.H. et al. Use of Physiologically Based Pharmacokinetic Modeling for Predicting Drug–Food Interactions: Recommendations for Improving Predictive Performance of Low Confidence Food Effect Models. AAPS J 23, 85 (2021). https://doi.org/10.1208/s12248-021-00601-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-021-00601-0

KEY WORDS

Navigation