Skip to main content

Advertisement

Log in

Involvement of Indoxyl Sulfate in Renal and Central Nervous System Toxicities During Cisplatin-induced Acute Renal Failure

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The purpose of the present study was to explore the involvement of indoxyl sulfate (IS) in nephrotoxicity and central nervous system (CNS) toxicity in cisplatin (CDDP)-treated rats.

Materials and Methods

Renal function was evaluated by serum creatinine and BUN levels. The IS levels in the serum, brain and kidney was monitored by high-performance liquid chromatography method. Body weight and rectal temperature were monitored. Real-time PCR analysis was performed to examine rPer2 mRNA expression.

Results

Renal function deteriorated in a time-dependent manner after administration of CDDP. The concentration of IS in the serum, brain and kidney markedly increased 24–84 h after commencement of CDDP treatment. The observed increase in the levels of serum creatinine, BUN and IS was suppressed by concomitant administration of AST-120. Rectal temperature was significantly lowered 72–92  h after CDDP-treatment, which was partially restored by coadministration of AST-120. Moreover, the amplitude of rectal temperature rhythms was disrupted by treatment with CDDP. Circadian rhythm of rPer2 mRNA expression, a clock gene, in suprachiasmatic nucleus (SCN) and kidney was disturbed in CDDP-treated rats.

Conclusions

An increase in the IS level and the associated disturbance to the circadian rhythm are involved in the renal and CNS toxicities in CDDP-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IS:

indoxyl sulfate

ARF:

acute renal failure

CRF:

chronic renal failure

SCN:

suprachiasmatic nucleus

CNS:

central nervous system

ZT:

zeitgeber time

Per2 :

period 2

SCr:

serum creatinine

References

  1. F. Ries and J. Klastersky. Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am. J. Kidney Dis. 8:368–379 (1986).

    PubMed  CAS  Google Scholar 

  2. J. Deng, Y. Kohda, H. Chiao, Y. Wang, X. Hu, S. M. Hewitt, T. Miyaji, P. McLeroy, B. Nibhanupudy, S. Li, and R. A. Star. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 60:2118–2128 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. G. Ramesh, and W. B. Reeves. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 110:835–842 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. W. Lieberthal, V. Triaca, and J. Levine. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Adv. Physiol. Educ. 270:700–708 (1996).

    Google Scholar 

  5. T. Niwa, and M. Ise. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J. Lab. Clin. Med. 124:96–104 (1994).

    PubMed  CAS  Google Scholar 

  6. D. H. Bueschkens, and M. E. Stiles. Escherichia coli variants for gas and indole production at elevated incubation temperatures. Appl. Environ. Microbiol. 48:601–605 (1984).

    PubMed  CAS  Google Scholar 

  7. E. Banoglu, G. G. Jha, and R. S. King. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet. 26:235–240 (2001).

    PubMed  CAS  Google Scholar 

  8. T. Miyazaki, M. Ise, H. Seo, and T., Niwa. Indoxyl sulfate increases the gene expression of TGF-beta 1, TIMP-1 and pro-α1(É) collagen in uremic rat kidneys. Kidney Inter., Suppl. 62:S15–S22 (1997).

    CAS  Google Scholar 

  9. T. Niwa, T. Nomura, S. Sugiyama, T. Miyazaki, S. Tsukushi, and S. Tsutsui. The protein metabolite hypothesis, a model for the progression of renal failure: an oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients. Kidney Inter., Suppl. 62:S23–S28 (1997).

    CAS  Google Scholar 

  10. T. Miyazaki, I. Aoyama, M. Ise, H. Seo, and T. Niwa. An oral sorbent reduces overload of indoxyl sulphate and gene expression of TGF-β1 in uremic rat kidneys. Nephrol. Dial. Transplant. 15:1773–1781 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka. Uremic toxins of organic anion up-regulate PAI-1 expression by induction of NF-κB and free radical in proximal tubular cells. Kidney Int. 63:1671–1680 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. A. van Coevorden, J. Mockel, E. Laurent, M. Kerkhofs, M. L’Hermite-Baleriaux, C. Decoster, P. Neve, and E. van Cauter. Neuroendocrine rhythms and sleep in aging men. Am. J. Physiol. 260:E651–E661 (1991).

    PubMed  Google Scholar 

  13. D. Gupta, A. N. Aggarwal, S. Chaganti, and S. K. Jindal. Reducing the number of daily measurements results in poor estimation of diurnal variation of peak expiratory flow in healthy individuals. J. Postgrad. Med. 46:262–264 (2000).

    PubMed  CAS  Google Scholar 

  14. A. M. Richards, M. G. Nicholls, E. A. Espiner, H. Ikram, M. Cullens, and D. Hinton. Diurnal patterns of blood pressure, heart rate and vasoactive hormones in normal man. Clin. Exp. Hypertens., Part A Theory Pract. 8:153–166 (1986).

    Article  CAS  Google Scholar 

  15. W. E. Scales, A. J. Vander, M. B. Brown, and M. J. Kluger. Human circadian rhythms in temperature, trace metal, and blood variables. J. Appl. Physiol. 65:1840–1846 (1988).

    PubMed  CAS  Google Scholar 

  16. M. H. Hastings. Central clocking. Trends Neurosci. 20:459–464 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389:512–516 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. K. Kume, M. J. Zylka, S. Sriram, L. P. Shearman, D. R. Weaver, X. Jin, E. S. Maywood, M. H. Hastings, and S. M. Reppert. mCRY1 and mCRY2 are essential component of negative limb of the circadian clock feedback loop. Cell 98:193–205 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. A. B. Reddy, M. D. Field, E. S. Maywood, and M. H. Hastings. Differential resynchronization of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J. Neurosci. 22:7326–7330 (2002).

    PubMed  CAS  Google Scholar 

  21. A. C. Schoots, P. M. De Vries, R. Thiemann, W. A. Hazejager, S. L. Visser, and P. L. Oe. Biochemical and neurophysiological parameters in hemodialyzed patients with chronic renal failure. Clin. Chim. Acta 185:91–107 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. C. L. Robert, P. S. Richard, and C. Harold. The antitumor agent cis-Pt (NH3)2Cl2: distribution studies and dose calculation for 192mPt and 195mPt. J. Nucl. Med. 14:191–195 (1972).

    Google Scholar 

  23. I. J. Berman, and M. P. Mann. Seizures and transient cortical blindness associated with cis-platinum (II) diamminedichloride (PPD) therapy in a 30-year-old man. Cancer 45:764–766 (1980).

    Article  PubMed  CAS  Google Scholar 

  24. C. Verschraegen, C. A. Conrad, and W. K. Hong. Subacute encephalopathic toxicity of cisplatin. Lung Cancer 13:305–309 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. T. Deguchi, M. Nakamura, Y. Tsutsumi, A. Suenaga, and M. Otagiri. Pharmacokinetics and tissue distribution of uraemic indoxyl sulphate in rats. Biopharm. Drug Dispos. 24:345–355 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. T. Deguchi, S. Ohtsuki, M. Otagiri, H. Takanaga, H. Asaba, S. Mori, and T. Terasaki. Major role of organic anion transporter 3 in the transport of indoxyl sulphate in the kidney. Kidney Int. 61:1760–1768 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. I. Aoyama, A. Enomoto, and T. Niwa. Effects of oral adsorbent on gene expression profile in uremic rat kidney: cDNA array analysis. Am. J. Kidney Dis. 41:S8–S14 (2003).

    PubMed  CAS  Google Scholar 

  28. M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka. Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br. J. Pharmacol. 135:555–563 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. J. A. Boulant. Hypothalamic mechanisms in thermoregulation. Fed. Proc. 40:2843–2850 (1981).

    PubMed  CAS  Google Scholar 

  30. T. Sato, S. Miyazaki, and S. Mohri. Effects of an oral adsorbent on cisplatin-induced nephropathy in rats. Nippon Jinzo Gakkai Shi 38:290–295 (1996).

    PubMed  CAS  Google Scholar 

  31. S. Ohtsuki, H. Asaba, H. Takanaga, T. Deguchi, K. Hosoya, M. Otagiri, and T. Terasaki. Role of blood-brain barrier organic anion teansporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J. Neurochem. 83:57–66 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. M. Hohenegger, H. Echsel, M. Vermes, and H. Raneburger. Influence of some uremic toxins on oxygen consumption of rats in vivo and in vitro. Adv. Exp. Med. Biol. 212:99–104 (1987).

    PubMed  CAS  Google Scholar 

  33. D. I. Sessler. Mild perioperative hypothermia. N. Engl. J. Med. 336:1730–1737 (1997).

    Article  PubMed  CAS  Google Scholar 

  34. R. W. Powell, D. L. Dyess, J. N. Collins, W. S. Roberts, E. J. Tacchi, A. N. Swafford Jr, J. J. Ferrara, and J. L. Ardell. Regional blood flow response to hypothermia in premature, newborn, and neonatal piglets. J. Pediatr. Surg. 34:193–198 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. N. F. Ruby, J. Dark, D. E. Burns, H. C. Heller, and I. Zucker. The suprachiasmatic nucleus is essential for circadian body temperature rhythms in hibernating ground squirrels. J. Neurosci. 22:357–364 (2002).

    PubMed  CAS  Google Scholar 

  36. C. K. Song, and T. J. Bartness. CNS sympathetic outflow neurons to white fat that express MEL receptors may mediate seasonal adiposity. Am. J. Physiol., Regul. Integr. Comp. Physiol. 281:R666–R672 (2001).

    CAS  Google Scholar 

  37. R. M. Buijs, S. J. Chun, A. Niijima, H. J. Romijn, and K. Nagai. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J. Comp. Neurol. 431:405–423 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. C. Kopp, U. Albrecht, B. Zheng, and I. Tobler. Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur. J. Neurosci. 16:1099–1106 (2002).

    Article  PubMed  Google Scholar 

  39. K. L. Toh, C. R. Jones, Y. He, E. J. Eide, W. A. Hinz, D. M. Virshup, L. J. Ptacek, and Y. H. Fu. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. K. Ohishi, K. Sakamoto, T. Okada, T. Nagase, and N. Ishida. Humoral signals mediate the circadian expression of rat period homologue (rPer2) mRNA in peripheral tissues. Neurosci. Lett. 256:117–119 (1998).

    Article  Google Scholar 

  41. F. Damiola, N. Le Minh, N. Preitner, B. Kornmann, F. Fleury-Olela, and U. Schibler. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Saito.

Additional information

K.I. and H.W. contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwata, K., Watanabe, H., Morisaki, T. et al. Involvement of Indoxyl Sulfate in Renal and Central Nervous System Toxicities During Cisplatin-induced Acute Renal Failure. Pharm Res 24, 662–671 (2007). https://doi.org/10.1007/s11095-006-9183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9183-2

Key words

Navigation