Skip to main content

Advertisement

Log in

Protection Against Chemotherapy-Induced Alopecia

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The goal is to provide an overview on the advances in protection against chemotherapy-induced alopecia (CIA).

Materials and Methods

The four major parts of this review are (a) overview of the hair follicle biology, (b) characteristics of CIA, (c) state-of-the-art animal models of CIA, and (d) experimental approaches on protection against CIA.

Results

The hair follicle represents an unintended target of cancer chemotherapy. CIA is a significant side effect that compromises the quality of life of patients. Overcoming CIA represents an area of unmet needs, especially for females and children. Significant progresses have been made in the last decade on the pathobiology of CIA. The pharmacological agents under evaluation include drug-specific antibodies, hair growth cycle modifiers, cytokines and growth factors, antioxidants, cell cycle or proliferation modifiers, and inhibitors of apoptosis. Their potential applications and limitations are discussed.

Conclusion

Multiple classes of agents with different action mechanisms have been evaluated in animal CIA models. Most of these protective agents have activity limited to a single chemotherapeutic agent. In comparison, calcitriol and cyclosporine A have broader spectrum of activity and can prevent against CIA by multiple chemotherapeutic agents. Among the three agents that have been evaluated in humans, AS101 and Minoxidil were able to reduce the severity or shorten the duration of CIA but could not prevent CIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ara-C:

cytosine arabinoside

CIA:

chemotherapy-induced alopecia

EGF:

epidermal growth factor

FGF:

fibroblast growth factor

IRS:

inner root sheath

ORS:

outer root sheath

PTH:

parathyroid hormone

PTHrP:

PTH-related protein

References

  1. N. Carelle, E. Piotto, A. Bellanger, J. Germanaud, A. Thuillier, and D. Khayat. Changing patient perceptions of the side effects of cancer chemotherapy. Cancer95:155–163 (2002).

    PubMed  Google Scholar 

  2. V. J. Dorr. A practioner’s guide to cancer-related alopecia. Semin. Oncol.25:562–570 (1998).

    CAS  PubMed  Google Scholar 

  3. C. Lindley, J. S. McCune, T. E. Thomason, D. Lauder, A. Sauls, S. Adkins, and W. T. Sawyer. Perception of chemotherapy side effects cancer versus noncancer patients. Cancer Pract.7:59–65 (1999).

    CAS  PubMed  Google Scholar 

  4. S. Pickard-Holley. The symptom experience of alopecia. Semin. Oncol. Nurs.11:235–238 (1995).

    CAS  Google Scholar 

  5. E. L. McGarvey, L. D. Baum, R. C. Pinkerton, and L. M. Rogers. Psychological sequelae and alopecia among women with cancer. Cancer Pract.9:283–289 (2001).

    CAS  PubMed  Google Scholar 

  6. K. Munstedt, N. Manthey, S. Sachsse, and H. Vahrson. Changes in self-concept and body image during alopecia induced cancer chemotherapy. Support. Care Cancer5:139–143 (1997).

    CAS  PubMed  Google Scholar 

  7. K. O. Baxley, L. K. Erdman, E. B. Henry, and B. J. Roof. Alopecia: effect on cancer patients’ body image. Cancer Nurs.7:499–503 (1984).

    CAS  PubMed  Google Scholar 

  8. S. Harrison and R. Sinclair. Optimal management of hair loss (alopecia) in children. Am. J. Clin Dermatol.4:757–770 (2003).

    PubMed  Google Scholar 

  9. L. Wagner and M. Gorely. Body image and patients experiencing alopecia as a result of cancer chemotherapy. Cancer Nurs.2:365–369 (1979).

    CAS  PubMed  Google Scholar 

  10. D. Spiegel and J. Giese-Davis. Depression and cancer: mechanisms and disease progression. Biol. Psychiatry54:269–282 (2003).

    PubMed  Google Scholar 

  11. T. Parker-Pope. Why curing your cancer may not be the best idea. Wall Street J., R1–R5, Dow Jones, 2003.

  12. R. Paus, S. Muller-Rover, C. van Der Veen, M. Maurer, S. Eichmuller, G. Ling, U. Hofmann, K. Foitzik, L. Mecklenburg, and B. Handjiski. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J. Invest. Dermatol.113:523–532 (1999).

    CAS  PubMed  Google Scholar 

  13. G. Cotsarelis, T. T. Sun, and R. M. Lavker. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell61:1329–1337 (1990).

    CAS  PubMed  Google Scholar 

  14. R. M. Lavker, T. T. Sun, H. Oshima, Y. Barrandon, M. Akiyama, C. Ferraris, G. Chevalier, B. Favier, C. A. Jahoda, D. Dhouailly, A. A. Panteleyev, and A. M. Christiano. Hair follicle stem cells. J. Investig. Dermatol. Symp. Proc.8:28–38 (2003).

    PubMed  Google Scholar 

  15. S. Lyle, M. Christofidou-Solomidou, Y. Liu, D. E. Elder, S. Albelda, and G. Cotsarelis. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci.111(21):3179–3188 (1998).

    CAS  PubMed  Google Scholar 

  16. R. J. Morris, Y. Liu, L. Marles, Z. Yang, C. Trempus, S. Li, J. S. Lin, J. A. Sawicki, and G. Cotsarelis. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol.22:411–417 (2004).

    CAS  PubMed  Google Scholar 

  17. K. S. Stenn and R. Paus. Controls of hair follicle cycling. Physiol. Rev.81:449–494 (2001).

    CAS  PubMed  Google Scholar 

  18. R. Paus, N. Krejci-Papa, L. Li, B. M. Czarnetzki, and R. M. Hoffman. Correlation of proteolytic activities of organ cultured intact mouse skin with defined hair cycle stages. J. Dermatol. Sci.7:202–209 (1994).

    CAS  PubMed  Google Scholar 

  19. W. C. Weinberg, P. D. Brown, W. G. Stetler-Stevenson, and S. H. Yuspa. Growth factors specifically alter hair follicle cell proliferation and collagenolytic activity alone or in combination. Differentiation45:168–178 (1990).

    CAS  PubMed  Google Scholar 

  20. S. Muller-Rover, E. J. Peters, V. A. Botchkarev, A. Panteleyev, and R. Paus. Distinct patterns of NCAM expression are associated with defined stages of murine hair follicle morphogenesis and regression. J. Histochem. Cytochem.46:1401–1410 (1998).

    CAS  PubMed  Google Scholar 

  21. A. J. Reynolds and C. A. Jahoda. Hair follicle stem cells? A distinct germinative epidermal cell population is activated in vitro by the presence of hair dermal papilla cells. J. Cell Sci.99 (Pt 2):373–385 (1991).

    PubMed  Google Scholar 

  22. E. A. Olsen. Disorders of Hair Growth: Diagnosis and Treatment. McGraw-Hill, Health Professions Division, 1994.

  23. G. Cotsarelis. The hair follicle: dying for attention. Am. J. Pathol.151:1505–1509 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. M. H. Hardy. The secret life of the hair follicle. Trends Genet.8:55–61 (1992).

    CAS  PubMed  Google Scholar 

  25. H. Oshima, A. Rochat, C. Kedzia, K. Kobayashi, and Y. Barrandon. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell104:233–245 (2001).

    CAS  PubMed  Google Scholar 

  26. M. Inaba, J. Anthony, and C. McKinstry. Histologic study of the regeneration of axillary hair after removal with subcutaneous tissue shaver. J. Invest. Dermatol.72:224–231 (1979).

    CAS  PubMed  Google Scholar 

  27. R. F. Oliver. Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J. Embryol. Exp. Morphol.15:331–347 (1966).

    CAS  PubMed  Google Scholar 

  28. R. F. Oliver. Ectopic regeneration of whiskers in the hooded rat from implanted lengths of vibrissa follicle wall. J. Embryol. Exp. Morphol.17:27–34 (1967).

    CAS  PubMed  Google Scholar 

  29. R. F. Oliver. The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae. J. Embryol. Exp. Morphol.18:43–51 (1967).

    CAS  PubMed  Google Scholar 

  30. C. Blanpain, W. E. Lowry, A. Geoghegan, L. Polak, and E. Fuchs. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118: 635–648 (2004).

    CAS  PubMed  Google Scholar 

  31. T. Tumbar, G. Guasch, V. Greco, C. Blanpain, W. E. Lowry, M. Rendl, and E. Fuchs. Defining the epithelial stem cell niche in skin. Science303:359–363 (2004).

    CAS  PubMed  Google Scholar 

  32. L. Alonso and E. Fuchs. Stem cells in the skin: waste not, Wnt not. Genes Dev.17:1189–1200 (2003).

    CAS  PubMed  Google Scholar 

  33. L. Alonso and E. Fuchs. Stem cells of the skin epithelium. Proc. Natl. Acad. Sci. USA100 (Suppl 1):11830–11835 (2003).

    CAS  PubMed  Google Scholar 

  34. H. B. Chase. Growth of the hair. Physiol. Rev.34:113–126 (1954).

    CAS  PubMed  Google Scholar 

  35. G. Powis and K. L. Kooistra. Doxorubicin-induced hair loss in the Angora rabbit: a study of treatments to protect against the hair loss. Cancer Chemother. Pharmacol.20:291–296 (1987).

    CAS  PubMed  Google Scholar 

  36. Bierman H.R., Kelly K.H., Knudson A.G., T. Maekawa, and G.M. Timmis. The influence of 1,4-dimethyl sulfonoxy-1,4-dimethylbutane (CB 2348, Dimethyl Myleran) in neoplastic disease. Ann. N.Y. Acad. Sci.68:1211–1222 (1958).

    CAS  PubMed  Google Scholar 

  37. D. Batchelor. Hair and cancer chemotherapy: consequences and nursing care—a literature study. Eur. J. Cancer Care (Engl.)10:147–163 (2001).

    CAS  Google Scholar 

  38. A. M. Hussein. Chemotherapy-induced alopecia: new developments. South. Med. J.86:489–496 (1993).

    CAS  PubMed  Google Scholar 

  39. B. D. Lawenda, H. M. Gagne, D. P. Gierga, A. Niemierko, W. M. Wong, N. J. Tarbell, G. T. Chen, F. H. Hochberg, and J. S. Loeffler. Permanent alopecia after cranial irradiation: dose–response relationship. Int. J. Radiat. Oncol. Biol. Phys.60: 879–887 (2004).

    PubMed  Google Scholar 

  40. C. S. Wen, S. M. Lin, Y. Chen, J. C. Chen, Y. H. Wang, and S. H. Tseng. Radiation-induced temporary alopecia after embolization of cerebral arteriovenous malformations. Clin. Neurol. Neurosurg.105:215–217 (2003).

    PubMed  Google Scholar 

  41. L. Li, L. B. Margolis, R. Paus, and R. M. Hoffman. Hair shaft elongation, follicle growth, and spontaneous regression in long-term, gelatin sponge-supported histoculture of human scalp skin. Proc. Natl. Acad. Sci. USA89:8764–8768 (1992).

    CAS  PubMed  Google Scholar 

  42. L. Li, R. Paus, A. Slominski, and R. M. Hoffman. Skin histoculture assay for studying the hair cycle in vitro. Cell Dev. Biol.28A:695–698 (1992).

    CAS  Google Scholar 

  43. R. Paus, K. S. Stenn, and R. E. Link. Telogen skin contains an inhibitor of hair growth. Br. J. Dermatol.122:777–784 (1990).

    CAS  PubMed  Google Scholar 

  44. R. Paus, B. Handjiski, S. Eichmuller et al. Chemotherapy-induced alopecia in mice-induction by cyclophosphamide, inhibition by cyclosporine-A, and modulation by dexamethasone. Am. J. Pathol.144:719–734 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. D. Van Neste, B. De Brouwer, and M. Dumortier. Reduced linear hair growth rates of vellus and of terminal hairs produced by human balding scalp grafted onto nude mice. Ann. N. Y. Acad. Sci.642:480–482 (1991).

    PubMed  Google Scholar 

  46. A. Domashenko, S. Gupta, and G. Cotsarelis. Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat. Biotechnol.18:420–423 (2000).

    CAS  PubMed  Google Scholar 

  47. T. Hashimoto, T. Kazama, M. Ito, K. Urano, Y. Katakai, N. Yamaguchi, and Y. Ueyama. Histologic and cell kinetic studies of hair loss and subsequent recovery process of human scalp hair follicles grafted onto severe combined immunodeficient mice. J. Invest. Dermatol.115:200–206 (2000).

    CAS  PubMed  Google Scholar 

  48. J. P. Sundberg and L. E. King, Jr. Mouse models for the study of human hair loss. Dermatol. Clin.14:619–632 (1996).

    CAS  PubMed  Google Scholar 

  49. S. M. Jankovic and S. V. Jankovic. The control of hair growth. Dermatol. OnLine J.4:2 (1998).

    CAS  PubMed  Google Scholar 

  50. A. M. Hussein, J. J. Jimenez, C. A. McCall, and A. A. Yunis. Protection from chemotherapy-induced alopecia in a rat model. Science249:1564–1566 (1990).

    CAS  PubMed  Google Scholar 

  51. R. Cece, S. Cazzaniga, D. Morellie, L. Sfondrini, M. Bignotto, S. Menard, M. I. Colnaghi, and A. Balsari. Apoptosis of hair follicle cells during doxorubicin-induced alopecia in rats. Lab. Invest.75:601–609 (1996).

    CAS  PubMed  Google Scholar 

  52. A. L. Balsari, D. Morelli, S. Menard, U. Veronesi, and M. I. Colnaghi. Protection against doxorubicin-induced alopecia in rats by liposome-entrapped monoclonal antibodies. FASEB J.8:226–230 (1994).

    CAS  PubMed  Google Scholar 

  53. A. M. Hussein. Protection against cytosine arabinoside-induced alopecia by minoxidil in a rat animal model. Int. J. Dermatol.34:470–473 (1995).

    CAS  PubMed  Google Scholar 

  54. J. J. Jimenez and A. A. Yunis. Protection from 1-beta-D-arabinofuranosylcytosine-induced alopecia by epidermal growth-factor and fibroblast growth-factor inthe rat model. Cancer Res.52:413–415 (1992).

    CAS  PubMed  Google Scholar 

  55. M. B. Schilli, R. Paus, and A. Menrad. Reduction of intrafollicular apoptosis in chemotherapy-induced alopecia by topical calcitriol-analogs. J. Invest. Dermatol. 111:598–604 (1998).

    CAS  PubMed  Google Scholar 

  56. D. J. Tobin, E. Hagen, V. A. Botchkarev, and R. Paus. Do hair bulb melanocytes undergo apoptosis during hair follicle regression (catagen)? J. Invest Dermatol.111:941–947 (1998).

    CAS  PubMed  Google Scholar 

  57. G. Lindner, V. A. Botchkarev, N. V. Botchkareva, G. Ling, C. van Der Veen, and R. Paus. Analysis of apoptosis during hair follicle regression (catagen). Am. J. Pathol. 151:1601–1617 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. A. A. Sharov, G. Z. Li, T. N. Palkina, T. Y. Sharova, B. A. Gilchrest, and V. A. Botchkarev. Fas and c-kit are involved in the control of hair follicle melanocyte apoptosis and migration in chemotherapy-induced hair loss. J. Invest. Dermatol.120:27–35 (2003).

    CAS  PubMed  Google Scholar 

  59. U. Ohnemus, M. Unalan, B. Handjiski, and R. Paus. Topical estrogen accelerates hair regrowth in mice after chemotherapy-induced alopecia by favoring the dystrophic catagen response pathway to damage. J. Invest. Dermatol.122:7–13 (2004).

    CAS  PubMed  Google Scholar 

  60. A. Shirai, H. Tsunoda, T. Tamaoki, and T. Kamiya. Topical application of cyclosporin A induces rapid-remodeling of damaged anagen hair follicles produced in cyclophosphamide administered mice. J. Dermatol. Sci.27:7–13 (2001).

    CAS  PubMed  Google Scholar 

  61. J. M. Simister. Alopecia and cytotoxic drugs. Br. Med. J.2:1138 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. P. Katsimbri, A. Bamias, and N. Pavlidis. Prevention of chemotherapy-induced alopecia using an effective scalp cooling system. Eur. J. Cancer36:766–771 (2000).

    CAS  PubMed  Google Scholar 

  63. C. Protiere, K. Evans, J. Camerlo, M. P. D’Ingrado, G. Macquart-Moulin, P. Viens, D. Maraninchi, and D. Genre. Efficacy and tolerance of a scalp-cooling system for prevention of hair loss and the experience of breast cancer patients treated by adjuvant chemotherapy. Support. Care Cancer10:529–537 (2002).

    PubMed  Google Scholar 

  64. I. G. Ron, Y. Kalmus, Z. Kalmus, M. Inbar, and S. Chaitchik. Scalp cooling in the prevention of alopecia in patients receiving depilating chemotherapy. Support. Care Cancer5:136–138 (1997).

    CAS  PubMed  Google Scholar 

  65. G. Lutz. Effects of cyclosporin A on hair. Skin Pharmacol.7:101–104 (1994).

    CAS  PubMed  Google Scholar 

  66. R. Paus, K. S. Stenn, and R. E. Link. The induction of anagen hair growth in telogen mouse skin by cyclosporine A administration. Lab. Invest.60:365–369 (1989).

    CAS  PubMed  Google Scholar 

  67. M. Taylor, A. T. Ashcroft, and A. G. Messenger. Cyclosporin A prolongs human hair growth in vitro. J. Invest. Dermatol.100:237–239 (1993).

    CAS  PubMed  Google Scholar 

  68. J. Liu, J. D. Farmer, Jr., W. S. Lane, J. Friedman, I. Weissman, and S. L. Schreiber. Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes. Cell66:807–815 (1991).

    CAS  PubMed  Google Scholar 

  69. S. L. Schreiber. Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell70:365–368 (1992).

    CAS  PubMed  Google Scholar 

  70. A. M. Hussein, A. Stuart, and W. P. Peters. Protection against chemotherapy-induced alopecia by cyclosporin A in the newborn rat animal model. Dermatology190:192–196 (1995).

    CAS  PubMed  Google Scholar 

  71. B. Sredni, R. H. Xu, M. Albeck, U. Gafter, R. Gal, A. Shani, T. Tichler, J. Shapira, I. Bruderman, R. Catane, B. Kaufman, J. K. Whisnant, K. L. Mettinger, and Y. Kalechman. The protective role of the immunomodulator AS101 against chemotherapy-induced alopecia studies on human and animal models. Int. J. Cancer65:97–103 (1996).

    CAS  PubMed  Google Scholar 

  72. A. G. Messenger and J. Rundegren. Minoxidil: mechanisms of action on hair growth. Br. J. Dermatol.150:186–194 (2004).

    CAS  PubMed  Google Scholar 

  73. M. Duvic, N. A. Lemak, V. Valero, S. R. Hymes, K. L. Farmer, G. N. Hortobagyi, R. J. Trancik, B. A. Bandstra, and L. D. Compton. A randomized trial of minoxidil in chemotherapy-induced alopecia. J. Am. Acad. Dermatol.35:74–78 (1996).

    CAS  PubMed  Google Scholar 

  74. C. O. Granai, H. Frederickson, W. Gajewski, A. Goodman, A. Goldstein, and H. Baden. The use of minoxidil to attempt to prevent alopecia during chemotherapy for gynecologic malignancies. Eur. J. Gynaecol. Oncol.12:129–132 (1991).

    CAS  PubMed  Google Scholar 

  75. R. Rodriguez, M. Machiavelli, B. Leone et al. Minoxidil (Mx) as a prophylaxis of doxorubicin-induced alopecia. Ann. Oncol.5:769–770 (1994).

    CAS  PubMed  Google Scholar 

  76. D. Tran, R. D. Sinclair, A. P. Schwarer, and C. W. Chow. Permanent alopecia following chemotherapy and bone marrow transplantation. Aust. J. Dermatol.41:106–108 (2000).

    CAS  Google Scholar 

  77. D. M. Danilenko, B. D. Ring, and G. F. Pierce. Growth factors and cytokines in hair follicle development and cycling: recent insights from animal models and the potentials for clinical therapy. Mol. Med. Today2:460–467 (1996).

    CAS  PubMed  Google Scholar 

  78. R. Paus and G. Cotsarelis. The biology of hair follicles. N. Engl. J. Med.341:491–497 (1999).

    CAS  PubMed  Google Scholar 

  79. R. Imai, T. Jindo, K. Mochida, S. Shimaoka, K. Takamori, and H. Ogawa. Effects of cytokines, anti-cancer agents and cocarcinogen on DNA synthesis in hair bulb cells. J. Dermatol. Sci.5:73–80 (1993).

    CAS  PubMed  Google Scholar 

  80. D. L. du Cros. Fibroblast growth factor and epidermal growth factor in hair development. J. Invest. Dermatol.101:106S–113S (1993).

    PubMed  Google Scholar 

  81. D. L. du Cros. Fibroblast growth factor influences the development and cycling of murine hair follicles. Dev. Biol.156:444–453 (1993).

    PubMed  Google Scholar 

  82. R. Halaban, R. Langdon, N. Birchall, C. Cuono, A. Baird, G. Scott, G. Moellmann, and J. McGuire. Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes. J. Cell Biol.107:1611–1619 (1988).

    CAS  PubMed  Google Scholar 

  83. C. Booth and C. S. Potten. Keratinocyte growth factor increases hair follicle survival following cytotoxic insult. J. Invest. Dermatol.114:667–673 (2000).

    CAS  PubMed  Google Scholar 

  84. D. M. Danilenko, B. D. Ring, D. Yanagihara, W. Benson, B. Wiemann, C. O. Starnes, and G. F. Pierce. Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am. J. Pathol. 147:145–154 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. G. F. Pierce, D. Yanagihara, K. Klopchin, D. M. Danilenko, E. Hsu, W. C. Kenney, and C. F. Morris. Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor. J. Exp. Med.179:831–840 (1994).

    CAS  PubMed  Google Scholar 

  86. J. M. Hebert, T. Rosenquist, J. Gotz, and G. R. Martin. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell78:1017–1025 (1994).

    CAS  PubMed  Google Scholar 

  87. T. A. Rosenquist and G. R. Martin. Fibroblast growth factor signalling in the hair growth cycle: expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle. Dev. Dyn. 205:379–386 (1996).

    CAS  PubMed  Google Scholar 

  88. F. D’Agostini, M. Bagnasco, D. Giunciuglio, A. Albini, and S. De Flora. Inhibition by oral N-acetylcysteine of doxorubicin-induced clastogenicity and alopecia, and prevention of primary tumors and lung micrometastases in mice. Int. J. Oncol.13:217–224 (1998).

    PubMed  Google Scholar 

  89. J. J. Jimenez, H. S. Haung, and A. A. Yunis. Treatment with ImuVert/N-acetylcysteine protects rats from cyclophosphamide/ cytarabine-induced alopecia. Cancer Invest.10:271–276 (1992).

    CAS  PubMed  Google Scholar 

  90. T. Kobayashi, K. Hashimoto, and K. Yoshikawa. Growth inhibition of human keratinocytes by 1,25-dihydroxyvitamin D3 is linked to dephosphorylation of retinoblastoma gene product. Biochem. Biophys. Res. Commun.196:487–493 (1993).

    CAS  PubMed  Google Scholar 

  91. T. Kobayashi, H. Okumura, K. Hashimoto, H. Asada, S. Inui, and K. Yoshikawa. Synchronization of normal human keratinocyte in culture: its application to the analysis of 1,25-dihydroxyvitamin D3 effects on cell cycle. J. Dermatol. Sci.17:108–114 (1998).

    CAS  PubMed  Google Scholar 

  92. S. E. Blutt, E. A. Allegretto, J. W. Pike, and N. L. Weigel. 1,25-dihydroxyvitamin D3 and 9-cis-retinoic acid act synergistically to inhibit the growth of LNCaP prostate cells and cause accumulation of cells in G1. Endocrinology138:1491–1497 (1997).

    CAS  PubMed  Google Scholar 

  93. G. Hager, M. Formanek, C. Gedlicka, D. Thurnher, B. Knerer, and J. Kornfehl. 1,25(OH)2 vitamin D3 induces elevated expression of the cell cycle-regulating genes P21 and P27 in squamous carcinoma cell lines of the head and neck. Acta Oto-laryngol.121:103–109 (2001).

    CAS  Google Scholar 

  94. S. Kawa, K. Yoshizawa, M. Tokoo, H. Imai, H. Oguchi, K. Kiyosawa, T. Homma, T. Nikaido, and K. Furihata. Inhibitory effect of 220-oxa-1,25-dihydroxyvitamin D3 on the proliferation of pancreatic cancer cell lines. Gastroenterology110:1605–1613 (1996).

    CAS  PubMed  Google Scholar 

  95. J. Kornfehl, M. Formanek, A. Temmel, B. Knerer, and M. Willheim. Antiproliferative effects of the biologically active metabolite of vitamin D3 (1,25 [OH]2 D3) on head and neck squamous cell carcinoma cell lines. Eur. Arch. Oto-rhino-laryngol.253:341–344 (1996).

    CAS  Google Scholar 

  96. M. Liu, M. H. Lee, M. Cohen, M. Bommakanti, and L. P. Freedman. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev.10:142–153 (1996).

    CAS  PubMed  Google Scholar 

  97. J. J. Jimenez and A. A. Yunis. Vitamin D3 and chemotherapy-induced alopecia. Nutrition12:448–449 (1996).

    CAS  PubMed  Google Scholar 

  98. J. J. Jimenez and A. A. Yunis. Protection from chemotherapy-induced alopecia by 1,25-dihydroxyvitamin D3. Cancer Res.52:5123–5125 (1992).

    CAS  PubMed  Google Scholar 

  99. J. J. Jimenez, E. Alvarez, C. D. Bustamante, and A. A. Yunis. Pretreatment with 1,25(OH)2D3 protects from Cytoxan-induced alopecia without protecting the leukemic cells from Cytoxan. Am. J. Med. Sci.310:43–47 (1995).

    CAS  PubMed  Google Scholar 

  100. R. Paus, M. B. Schilli, B. Handjiski, A. Menrad, B. M. Henz, and P. Plonka. Topical calcitriol enhances normal hair regrowth but does not prevent chemotherapy-induced alopecia in mice. Cancer Res.56:4438–4443 (1996).

    CAS  PubMed  Google Scholar 

  101. Jimenez JJ, Beydoun M, and Yunis AA. 1,25(OH)2D3 protects from Taxol-induced alopecia. Clin. Res.42:128A (1994).

    Google Scholar 

  102. M. Hidalgo, D. Rinaldi, G. Medina, T. Griffin, J. Turner, and D.D. Von Hoff. A phase I trial of topical topitriol (calcitriol, 1,25-dihydroxyvitamin D-3) to prevent chemotherapy-induced alopecia. Anti-Cancer Drugs10:393–395 (1999).

    CAS  PubMed  Google Scholar 

  103. M. F. Holick, S. Ray, T. C. Chen, X. Tian, and K. S. Persons. A parathyroid hormone antagonist stimulates epidermal proliferation and hair growth in mice. Proc. Natl. Acad. Sci. USA91:8014–8016 (1994).

    CAS  PubMed  Google Scholar 

  104. E. M. Peters, K. Foitzik, R. Paus, S. Ray, and M. F. Holick. A new strategy for modulating chemotherapy-induced alopecia, using PTH/PTHrP receptor agonist and antagonist. J. Invest. Dermatol.117:173–178 (2001).

    CAS  PubMed  Google Scholar 

  105. V. A. Botchkarev, E. A. Komarova, F. Siebenhaar, N.V. Botchkareva, P.G. Komarov, M. Maurer, B.A. Gilchrest, and A.V. Gudkov. p53 is essential for chemotherapy-induced hair loss. Cancer Res.60:5002–5006 (2000).

    CAS  PubMed  Google Scholar 

  106. V. A. Botchkarev, E. A. Komarova, F. Siebenhaar, N. V. Botchkareva, A. A. Sharov, P. G. Komarov, M. Maurer, A. V. Gudkov, and B. A. Gilchrest. p53 Involvement in the control of murine hair follicle regression. Am. J. Pathol.158:1913–1919 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. V. A. Botchkarev. Molecular mechanisms of chemotherapy-induced hair loss.J. Investig. Dermatol. Symp. Proc.8:72–75 (2003).

    CAS  PubMed  Google Scholar 

  108. T. Tsuda, Y. Ohmori, H. Muramatsu, Y. Hosaka, K. Takiguchi, F. Saitoh, K. Kato, K. Nakayama, N. Nakamura, S. Nagata, and H. Mochizuki. Inhibitory effect of M50054, a novel inhibitor of apoptosis, on anti-Fas-antibody-induced hepatitis and chemotherapy-induced alopecia. Eur. J. Pharmacol.433:37–45 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported in part by a research grant R43CA107998 from the National Cancer Institute, DHHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie L.-S. Au.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Lu, Z. & Au, J.LS. Protection Against Chemotherapy-Induced Alopecia. Pharm Res 23, 2505–2514 (2006). https://doi.org/10.1007/s11095-006-9105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9105-3

Key words

Navigation