Skip to main content

Advertisement

Log in

Porcine Alveolar Epithelial Cells in Primary Culture: Morphological, Bioelectrical and Immunocytochemical Characterization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to establish a primary culture of porcine lung epithelial cells as an alternative to the currently existing cell cultures from other species, such as e.g., rat or human. Primary porcine lung epithelial cells were isolated, cultivated and analyzed at distinct time points after isolation.

Materials and Methods

The main part of the work focused on the morphology of the cells and the detection of alveolar epithelial cell markers by using electron microscopy, immunofluorescence microscopy and immunoblotting. Regarding a later use for in vitro pulmonary drug absorption studies the barrier properties of the cell monolayer were evaluated by monitoring bioelectrical parameters and by marker transport.

Results

Epithelial cells isolated from porcine lung grew to confluent monolayers with typical intercellular junctions within a few days. Maximum transepithelial resistance of about 2,000 Ωcm2 was achieved and demonstrated the formation of a tight epithelial barrier. Permeability data of sodium fluorescein recommended a minimal transepithelial resistance of 600 Ωcm2 for transport studies. The cell population changed from a heterogeneous morphology and marker distribution (caveolin-1, pro-SP-C, surface sugars) towards a monolayer consisting of two cell types resembling type I and type II pneumocytes.

Conclusions

The porcine alveolar epithelial primary cell culture holds promise for drug transport studies, because it shares major hallmarks of the mammalian alveolar epithelium and it is easily available and scaled up for drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

(ab):

transport direction from apical to basolateral

AP:

alkaline phosphatase

ATCC:

american type culture collection

Flu-Na:

sodium fluorescein

hAEpC:

human alveolar epithelial cells

kDa:

kilo dalton

MPA:

maclura pomifera lectin

pAEpC:

porcine alveolar epithelial cells

pAEpC-n :

pAEpC isolation number n (cell batch)

P app :

apparent permeability coefficient

PD:

potential difference

rAEpC:

rat alveolar epithelial cells

RCA:

ricinus communis lectin

rpm:

revolutions per minute

SAGM:

small airway growth medium

SDS:

sodium dodecyl sufate

TEER:

transepithelial electrical resistance

TEERmax :

maximum transepithelial electrical resistance

TRIS:

Tris(hydroxymethyl)methylamine (buffer)

References

  1. L. G. Dobbs. Isolation and culture of alveolar type II cells. Am. J. Physiol. 258(4 Pt 1):L134–L147 (1990).

    PubMed  CAS  Google Scholar 

  2. K. J. Elbert, U. F. Schäfer, H. J. Schäfers, K. J. Kim, V. H. Lee, and C. M. Lehr. Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies. Pharm. Res. 16(5):601–608, (1999).

    Article  PubMed  CAS  Google Scholar 

  3. C. Ehrhardt, K.-J. Kim, and C.-M. Lehr. Isolation and culture of human alveolar epithelial cells. In J. Picot, (ed.), Human Cell Culture Protocols, Humana, Totowa, New Jersey, 2005, pp. 207–216.

    Google Scholar 

  4. W. G. Pond and K. A. Houpt. The pig as a model in biomedical research. In Cornell University Press Ithaca (ed.), The Biology of the Pig, Comstock, London, 1978, pp. 13–64.

    Google Scholar 

  5. C. Hammer. Xenotransplantation—will it bring the solution to organ shortage? Ann. Transplant. 9(1):7–10 (2004).

    PubMed  CAS  Google Scholar 

  6. N. Gardner, W. Haresign, R. Spiller, N. Farraj, J. Wiseman, H. Norbury, and L. Illum. Development and validation of a pig model for colon-specific drug delivery. J. Pharm. Pharmacol. 48:689–693 (1996).

    PubMed  CAS  Google Scholar 

  7. O. Camber and P. Edman. Factors influencing the corneal permeability of prostaglandin F2alfa and its isopropyl ester in vitro. Int. J. Pharm. 37:27–32 (1987).

    Article  CAS  Google Scholar 

  8. M. Fujii, S. Yamanouchi, N. Hori, N. Iwanaga, N. Kawaguchi, and M. Matsumoto. Evaluation of yucatan micropig skin for use as an in vitro model for skin permeation study. Biol. Pharm. Bull. 20(3):249–254 (1997).

    PubMed  CAS  Google Scholar 

  9. M. B. Hansen, J. E. Thorboll, P. Christensen, N. Bindslev, and E. Skadhauge. Serotonin-induced short-circuit current in pig jejunum. Zentralbl. Veterinarmed. A. 41(2):110–120 (1994).

    PubMed  CAS  Google Scholar 

  10. A. J. Hoogstraate, J. Coos Verhoef, A. Pijpers, L. A. van Leengoed, J. H. Verheijden, H. E. Junginger, and H. E. Bodde. In vivo buccal delivery of the peptide drug buserelin with glycodeoxycholate as an absorption enhancer in pigs. Pharm. Res. 13(8):1233–1237 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. C. Wadell, E. Bjork, and O. Camber. Nasal drug delivery—evaluation of an in vitro model using porcine nasal mucosa. Eur. J. Pharm. Sci. 7(3):197–206 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. S. Sangadala, P. Wallace, and J. Mendicino. Characterization of mucin glycoprotein-specific translation products from swine and human trachea, pancreas and colon. Mol. Cell. Biochem. 106(1):1–14 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. M. Larsen and B. Rolin. Use of the Gottingen minipig as a model of diabetes, with special focus on type1 diabetes research. ILAR J. 45(3):303–313 (2004).

    PubMed  CAS  Google Scholar 

  14. S. Fuchs, A. J. Hollins, M. Laue, U. F. Schaefer, K. Roemer, M. Gumbleton, and C.-M. Lehr. Differentiation of human alveolar epithelial cells in primary culture: morphological characterization and synthesis of caveolin-1 and surfactant protein-C. Cell. Tissue Res. 311:31–45 (2003).

    Article  PubMed  Google Scholar 

  15. L. Bingle, T. B. Bull, B. Fox, A. Guz, R. J. Richards, and T. D. Tetley. Type II pneumocytes in mixed cell culture of human lung: a light and electron microscopic study. Environ. Health Perspect. 85:71–80 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. A. C. Cunningham, D. S. Milne, J. Wilkes, J. H. Dark, T. D. Tetley, and J. A. Kirby. Constitutive expression of MHC and adhesion molecules by alveolar epithelial cells (type II pneumocytes) isolated from human lung and comparison with immunocytochemical findings. J. Cell. Sci. 107(Pt 2):443–449 (1994).

    PubMed  CAS  Google Scholar 

  17. C. Gindorf, A. Steimer, C. M. Lehr, U. Bock, S. Schmitz, and E. Haltner. Markertransport über biologische Barrieren in vitro: Vergleich von Zellkulturmodellen für die Dünndarmschleimhaut, die Blut-Hirn Schranke und das Alveolarepithel der Lunge. Altex. 18(3):155–164 (2001).

    PubMed  CAS  Google Scholar 

  18. LGC Promochem Offices (ATCC homepage). Cell lines and Hybridomas, Product Description. http://www.lgcpromochem-atcc.com/common/catalog/CellBiology/CellBiologyIndex.cfm (accessed 12/04/05), part of ATCC homepage. http://www. lgcpromochem-atcc.com (accessed 12/04/05).

  19. C. Jumarie and C. Malo. Caco-2 cells cultured in serum-free medium as a model for the study of enterocytic differentiation in vitro. J. Cell. Physiol. 149(1):24–33 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. H. Franke, H.-J. Galla, and C. T. Beuckmann. Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood–brain barrier. Brain Res. Brain Res. Prot. 5:248–256 (2000).

    Article  CAS  Google Scholar 

  21. J. H. Luft. Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9(Feb):409–414 (1961).

    Article  PubMed  CAS  Google Scholar 

  22. M. Laue, G. Kiefer, B. Leis, N. Pütz, and P. Mestres. Environmental scanning electron microscopy of resin block face. Eur. Microsc. Anal. 97:13–15 (2005).

    Google Scholar 

  23. Roche Molecular Biochemicals. Lab FAQS: find a quick solution. Urs W. Hoffmann-Rohrer (DFKZ Heidelberg) (ed.), Mannheim, 2000.

  24. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the folin phenol reagent. J. Biol. Chem. Baltimore. 193:265–275 (1951).

    CAS  Google Scholar 

  25. U. K. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227(259):680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  26. L. G. Dobbs, M. C. Williams, and A. E. Brandt. Changes in biochemical characteristics and pattern of lectin binding of alveolar type II cells with time in culture. Biochim. Biophys. Acta. 846(1):155–166 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. G. R. Newman, L. Campbell, C. von Ruhland, B. Jasani, and M. Gumbleton. Caveolin and its cellular and subcellular immunolocalisation in lung alveolar epithelium: implications for alveolar epithelial type I cell function. Cell. Tissue Res. 295(1):111–120 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. J. L. Alcorn, M. E. Smith, J. F. Smith, L. R. Margraf, and C. R. Mendelson. Primary cell culture of human type II pneumonocytes: maintenance of a differentiated phenotype and transfection with recombinant adenoviruses. Am. J. Respir. Cell. Mol. Biol. 17 (6):672–682 (1997).

    PubMed  CAS  Google Scholar 

  29. Loxo Ltd. Product catalogue: LRP antibody. Novocastra Laboratories Ltd: p. 126. (2001).

  30. J. D. Edelson, J. M. Shannon, and R. J. Mason. Alkaline phosphatase: a marker of alveolar type II cell differentiation. Am. Rev. Resp. Dis. 138(5):1268–1275 (1988).

    PubMed  CAS  Google Scholar 

  31. A. Steimer, E. Haltner, and C.-M. Lehr. Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J. Aerosol. Med. 18(2):137–182 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. E. R. Weibel. Morphometry of the Human Lung. Academic, New York, 1963.

    Google Scholar 

  33. E. R. Weibel, P. Gehr, D. Haies, J. Gil, and M. Bachofen. The cell population of the normal lung. In A. Bouhhuys (ed.), Lung Cells in Disease, Amsterdam, North-Holland, 1976, pp. 3–16.

    Google Scholar 

  34. J. D. Crapo, B. E. Barry, P. Gehr, M. Bachofen, and E. R. Weibel. Cell number and cell characteristics of the normal human lung. Am. Rev. Respir. Dis. 126(2):332–337 (1982).

    PubMed  CAS  Google Scholar 

  35. L. G. Dobbs, M. C. Williams, and R. Gonzalez. Monoclonal antibodies specific to apical surfaces of rat alveolar type I cells bind to surfaces of cultured, but not freshly isolated, type II cells. Biochim. Biophys. Acta. 970(2):146–156 (1988).

    Article  PubMed  CAS  Google Scholar 

  36. D. M. Haies, J. Gil, and E. R. Weibel. Morphometric study of rat lung cells. I. Numerical and dimensional characteristics of parenchymal cell population. Am. Rev. Respir. Dis. 123(5):533–541 (1981).

    PubMed  CAS  Google Scholar 

  37. J. M. Cheek, M. J. Evans, and E. D. Crandall. Type I cell-like morphology in tight alveolar epithelial monolayers. Exp. Cell Res. 184(2):375–387 (1989).

    Article  PubMed  CAS  Google Scholar 

  38. C. A. Diglio and Y. Kikkawa. The type II epithelial cells of the lung. IV. Adaption and behavior of isolated type II cells in culture. Lab. Invest. 37(6):622–631 (1977).

    PubMed  CAS  Google Scholar 

  39. I. Y. Adamson and D. H. Bowden. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab. Invest. 30(1):35–42 (1974).

    PubMed  CAS  Google Scholar 

  40. L. Campbell, A. J. Hollins, A. Al-Eid, G. R. Newman, C. von Ruhland, and M. Gumbleton. Caveolin-1 expression and caveolae biogenesis during cell transdifferentiation in lung alveolar epithelial primary cultures. Biochem. Biophys. Res. Commun. 262(3):744–751 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. Y. Matsukawa, H. Yamahara, F. Yamashita, V. H. Lee, E. D. Crandall, and K. J. Kim. Rates of protein transport across rat alveolar epithelial cell monolayers. J. Drug Target. 7(5):335–342 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. K. J. Kim, Z. Borok, and E. D. Crandall. A useful in vitro model for transport studies of alveolar epithelial barrier. Pharm. Res. 18(3):253–255 (2001).

    Article  PubMed  CAS  Google Scholar 

  43. P. Vodicka, K. J. Smetana, B. Dvorankova, T. Emerick, Y. Xu, J. Ourednik, V. Ourednik, and J. Motlik. The miniature pig as an animal model in biomedical research. Ann. NY Acad. Sci. 1049:161–171 (2005).

    Article  PubMed  Google Scholar 

  44. T. F. Allred, R. R. Mercer, R. F. Thomas, H. Deng, and R. L. Auten. Brief 95% O2 exposure effects on surfactant protein and mRNA in rat alveolar and bronchiolar epithelium. Am. J. Physiol. 276(6 Pt 1):L999–L1009 (1999).

    PubMed  CAS  Google Scholar 

  45. G. F. Ross, M. Ikegami, W. Steinhilber, and A. H. Jobe. Surfactant protein C in fetal and ventilated preterm rabbit lungs. Am. J. Physiol. 277(6 Pt 1):L1104–L1108 (1999).

    PubMed  CAS  Google Scholar 

  46. V. Wong, D. Ching, P. D. McCrea, and G. L. Firestone. Glucocorticoid down-regulation of fascin protein expression is required for the steroid-induced formation of tight junctions and cell–cell interactions in rat mammary epithelial tumor cells. J. Biol. Chem. 274(9):5443–5453 (1999).

    Article  PubMed  CAS  Google Scholar 

  47. H. Wan, H. L. Winton, C. Soeller, G. A. Stewart, P. J. Thompson, D. C. Gruenert, M. B. Cannell, D. R. Garrod, and C. Robinson. Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o−. Eur. Respir. J. 15(6):1058–1068 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. Y. Man, V. J. Hart, C. J. Ring, S. Sanjar, and M. R. West. Loss of epithelial integrity resulting from E-cadherin dysfunction predisposes airway epithelial cells to adenoviral infection. Am. J. Respir. Cell Mol. Biol. 23(5):610–617 (2000).

    PubMed  CAS  Google Scholar 

  49. C. Ehrhardt, C. Kneuer, M. Laue, U. F. Schaefer, K. J. Kim, and C. M. Lehr. 16HBE14o− human bronchial epithelial cell layers express P-glycoprotein, lung resistance-related protein, and caveolin-1. Pharm. Res. 20(4):545–551 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Carsten Ehrhardt for helpful discussions and cooperation in immunostaining and confocal laser scanning microscopy, Birgit Leis and Norbert Pütz for technical assistance in electron microscopy and Manuel Birke (Symbiotec) for his kind introduction to the BioRad Scanner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus-Michael Lehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steimer, A., Laue, M., Franke, H. et al. Porcine Alveolar Epithelial Cells in Primary Culture: Morphological, Bioelectrical and Immunocytochemical Characterization. Pharm Res 23, 2078–2093 (2006). https://doi.org/10.1007/s11095-006-9057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9057-7

Key words

Navigation