Skip to main content

Advertisement

Log in

Uncertainty Analysis in Pharmacokinetics and Pharmacodynamics: Application to Naratriptan

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aim of the study was to predict pain relief of migraine in patients following naratriptan oral (tablet) administration by using uncertainty analysis. The analysis was based on phase I pharmacokinetic naratriptan data, sumatriptan pharmacodynamic data, and naratriptan preclinical (animal) potency information, together with general knowledge as to how migraine affects oral absorption.

Methods

A previously developed pharmacokinetic (PK)/pharmacodynamic (PD) model for naratriptan disposition and effect was used. The uncertain parameters in the model, which were associated with absorption and scaling between first-in-class compound sumatriptan and naratriptan, were modeled using fuzzy sets theory. Global sensitivity analysis was then used to investigate the impact of each PK/PD parameter on the responses.

Results

Acknowledging parametric uncertainty did not improve prediction of the probability of pain relief. Global sensitivity analysis demonstrated that predictions were heavily influenced by interindividual variability in pharmacodynamics, as the dose response relationship was relatively insensitive to the pharmacokinetics.

Conclusions

To predict the probability of pain relief following oral (tablet) administration of naratriptan, a simple dose response, instead of the PK/PD model, would have yielded very similar predictions. The naratriptan PK/PD model may be improved by either refining the PD model or better still by specifying the interindividual error by additional data collecting with an improved design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Peck R. Desjardins (1996) ArticleTitleSimulation of clinical trials: encouragement and cautions Appl. Clin. Trials 5 30–32

    Google Scholar 

  2. M. Hale W. Gillespie S. Gupta B. Tuk N. Holford (1996) ArticleTitleClinical trial simulation: streamlining your drug development process Appl. Clin. Trials 5 35–40

    Google Scholar 

  3. L. Lesko M. Rowland C. Peck T. Blaschke (2000) ArticleTitleOptimizing the science of drug development: opportunities for better candidate selection and accelerated evaluation in humans Eur. J. Pharm. Biopharm. 10 iv–xiv

    Google Scholar 

  4. R. Krall K. Engelman H. Ko C. Peck (1998) ArticleTitleClinical trial modeling and simulation—work in progress Drug Inf. J. 32 971–976

    Google Scholar 

  5. C. Peck (1997) ArticleTitleDrug development: improving the process Food Drug Law J. 52 163–167 Occurrence Handle10557553

    PubMed  Google Scholar 

  6. I. Nestorov G. Graham S. Duffull L. Aarons E. Fuseau P. Coates (2001) ArticleTitleModeling and simulation for clinical trial design involving a categorical response: a phase II case study with naratriptan Pharm. Res. 18 1210–1219 Occurrence Handle10.1023/A:1010943430471 Occurrence Handle11587494

    Article  PubMed  Google Scholar 

  7. T. Ross (1995) Fuzzy Logic with Engineering Applications McGraw Hill New York

    Google Scholar 

  8. I. Gueorguieva, I. Nestorov, and M. Rowland. Reducing whole body physiologically based models using global sensitivity analysis: diazepam case study. J Pharmacokin. Pharmacodyn. Accepted (2005)

  9. E. Fuseau R. Kempsford P. Winter M. Asgharnejad N. Sambol C. Y. Liu (1997) The Integration of the Population Approach into Drug Development: A Case Study, Naratriptan COST B1 Medicine, European Commission Brussels

    Google Scholar 

  10. V. Cosson E. Fuseau (1998) ArticleTitleMixed effect modelling of sumatriptan pharmacokinetics during drug development: II. From healthy subjects to phase II dose ranging in patients J. Pharmacokinet. Biopharm. 26 149–171

    Google Scholar 

  11. L. F. Lacey E. K. Hussey P. A. Fowler (1995) ArticleTitleSingle dose pharmacokinetics of sumatriptan in healthy volunteers Eur. J. Clin. Pharmacol. 47 543–548 Occurrence Handle10.1007/BF00193709 Occurrence Handle7768259

    Article  PubMed  Google Scholar 

  12. H. J. Zimmermann. Uncertainty modelling and fuzzy sets. In H. G. Natke and Y. Ben-Haim (eds.), Uncertainty Models and Measures, Akademie-Verlag, 1997, pp. 84–100.

  13. C. Dahlof L. Hogenhuis J. Olesen H. Petit J. Ribbat J. Schoenen D. Boswell E. Fuseau H. Hassani P. Winter (1998) ArticleTitleEarly clinical experience with subcutaneous naratriptan in the acute treatment of migraine: a dose-ranging study Eur. J. Neurol. 5 469–477 Occurrence Handle10.1046/j.1468-1331.1998.550469.x Occurrence Handle10210876

    Article  PubMed  Google Scholar 

  14. H. E. Connor W. Feniuk D. T. Beattie P. C. North A. W. Oxford D. A. Saynor P. P. A. Humphrey (1997) ArticleTitleNaratriptan: biological profile in animal models relevant to migraine Cephalalgia 17 145–152 Occurrence Handle10.1046/j.1468-2982.1997.1703145.x Occurrence Handle9170336

    Article  PubMed  Google Scholar 

  15. O. Petricoul and E. Fuseau. Meta-analysis of the exposure/efficacy relationship for sumatriptan nasal spray. Poster at the Population Approach Groupe in Europe (PAGE), Saintes, France (1999).

  16. N. Cutler E. Hussey J. Sramek B. Clements L. Paulsgrove M. Busch K. Donn (1991) ArticleTitleOral sumatriptan in pharmacokinetics in the migrainous state Cephalalgia 11 222–223

    Google Scholar 

  17. I. Gueorguieva I. Nestorov M. Rowland (2004) ArticleTitleFuzzy simulations of pharmacokinetic models: case study of whole body physiologically based model of diazepam J. Pharmacokinet. Pharmacodyn. 31 IssueID(3): 185–211 Occurrence Handle10.1023/B:JOPA.0000039564.35602.78 Occurrence Handle15518244

    Article  PubMed  Google Scholar 

  18. E. K. Hussey K. H. Donn M. A. Busch A. W. Fox A. W. Powell (1991) ArticleTitlePharmacokinetics of oral sumatriptan in migraine patients during an attack and while pain free Clin. Pharmacol. Ther. 49 PI-46

    Google Scholar 

  19. R. Boyle P. O. Behan J. A. Sutton (1990) ArticleTitleA correlation between severity of migraine and delayed gastric emptying Br. J. Clin. Pharmacol. 30 405–409 Occurrence Handle2223419

    PubMed  Google Scholar 

  20. G. N. Volans (1978) ArticleTitleResearch review migraine and drug absorption Clin. Pharmacokin. 3 313–318

    Google Scholar 

  21. G. Bojadziev M. Bojadziev (1995) Fuzzy sets, fuzzy logic, applications L. A. Zadeh K. Hirota G. Klir E. Sanchez P.-Z. Wang R. Yager (Eds) Advances in Fuzzy Systems—Applications and Theory World Scientific New Jersey 41–51

    Google Scholar 

  22. D. Dubois H. Prade (1983) ArticleTitleUnfair coins and necessity measures: towards a possibilistic interpretation of histograms Fuzzy Sets Syst. 10 15–20 Occurrence Handle10.1016/S0165-0114(83)80099-2

    Article  Google Scholar 

  23. Y. Lu S. Mohanty (2001) ArticleTitleSensitivity analysis of a complex, proposed geologic waste disposal system using the Fourier Amplitude Sensitivity Test method Reliab. Eng. Syst. Saf. 72 275–291 Occurrence Handle10.1016/S0951-8320(01)00020-5

    Article  Google Scholar 

  24. A. Salteli S. Tarantola (2001) SimLab 1.1, User Manual Joint Research Centre, European Commission Italy

    Google Scholar 

  25. N. T. Mathew M. Asgharnejad M. Peykamian A. Laurenza (1997) ArticleTitleNaratriptan is effective and well tolerated in the acute treatment of migraine. Results of a double-blind, placebo-controlled, crossover study. The Naratriptan S2WA3003 Study Group Neurology 49 1485–1490 Occurrence Handle9409334

    PubMed  Google Scholar 

  26. M. Civanlar H. J. Trussell (1986) ArticleTitleConstructing membership functions using statistical data Fuzzy Sets Syst. 18 1–13 Occurrence Handle10.1016/0165-0114(86)90024-2

    Article  Google Scholar 

  27. T. Tomovic (1964) Dynamic Systems Sensitivity Analysis McGraw-Hill New York

    Google Scholar 

  28. A. Saltelli K. Chan E. M. Scott (2000) Sensitivity Analysis J. Wiley & Sons England

    Google Scholar 

  29. D. Anderson (1983) Compartmental Modeling and Tracer Kinetics. Lecture Notes in Biomathematics Springer-Verlag Heidelberg

    Google Scholar 

  30. K. Godfrey (1983) Compartmental Models and Their Applications Academic Press Cambridge

    Google Scholar 

  31. G. Wu (2000) ArticleTitleSensitivity analysis of pharmacokinetic parameters in one-compartment models Pharm. Res. 41 445–453 Occurrence Handle10.1006/phrs.1999.0602

    Article  Google Scholar 

  32. W. Meurs E. Nikkelen M. Good (1998) ArticleTitlePharmacokinetic/pharmacodynamic model for educational simulations IEEE Trans. Biomed. Eng. 45 582–589 Occurrence Handle10.1109/10.668748 Occurrence Handle9581056

    Article  PubMed  Google Scholar 

  33. I. Nestorov. System sensitivity analysis in pharmacokinetic and pharmacodynamic modelling, In: International Conference on Health Sciences Simulation, San Diego, USA, pp 117–122, 2000.

  34. H. Clewell M. Andersen (1996) ArticleTitleUse of physiologically based pharmacokinetic modeling to investigate individual versus population risk Toxicology 111 315–329 Occurrence Handle10.1016/0300-483X(96)03385-9 Occurrence Handle8711746

    Article  PubMed  Google Scholar 

  35. H. J. Clewell T. Lee R. L. Carpenter (1994) ArticleTitleSensitivity of physiologically based pharmacokinetic models to variation in model parameters: methylene chloride Risk Anal. 14 521–531 Occurrence Handle7972956

    PubMed  Google Scholar 

  36. I. Nestorov A. Aarons M. Rowland (1997) ArticleTitlePhysiologically based pharmacokinetic modelling of a homologous series of barbiturates in the rat: a sensitivity analysis J. Pharmacokinet. Biopharm. 25 413–447 Occurrence Handle10.1023/A:1025740909016 Occurrence Handle9561487

    Article  PubMed  Google Scholar 

  37. A. Atkinson A. Donev (1992) Optimal Experimental Design Clarendon Press Oxford

    Google Scholar 

Download references

Acknowledgments

Financial support for this project was provided by the following Centre for Applied Pharmacokinetic Research Consortium members: GlaxoSmithKline, Novartis, Pfizer, Roche, Servier, and Eli Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivelina Gueorguieva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gueorguieva, I., Nestorov, I.A., Aarons, L. et al. Uncertainty Analysis in Pharmacokinetics and Pharmacodynamics: Application to Naratriptan. Pharm Res 22, 1614–1626 (2005). https://doi.org/10.1007/s11095-005-6629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-6629-x

Key Words

Navigation