Skip to main content

Advertisement

Log in

Comparison of the Pharmacokinetics of Oxycodone and Noroxycodone in Male Dark Agouti and Sprague–Dawley Rats: Influence of Streptozotocin-Induced Diabetes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aims of this study are to evaluate whether cytochrome P450 (CYP)2D1/2D2-deficient dark agouti (DA) rats and/or CYP2D1/2D2-replete Sprague–Dawley (SD) rats are suitable preclinical models of the human, with respect to mirroring the very low plasma concentrations of metabolically derived oxymorphone seen in humans following oxycodone administration, and to examine the effects of streptozotocin-induced diabetes on the pharmacokinetics of oxycodone and its metabolites, noroxycodone and oxymorphone, in both rodent strains.

Methods

High-performance liquid chromatography–electrospray ionization–tandem mass spectrometry was used to quantify the serum concentrations of oxycodone, noroxycodone, and oxymorphone following subcutaneous administration of bolus doses of oxycodone (2 mg/kg) to groups of nondiabetic and diabetic rats.

Results

The mean (±SEM) areas under the serum concentration vs. time curves for oxycodone and noroxycodone were significantly higher in DA relative to SD rats (diabetic, p < 0.05; nondiabetic, p < 0.005). Serum concentrations of oxymorphone were very low (<6.9 nM).

Conclusions

Both DA and SD rats are suitable rodent models to study oxycodone’s pharmacology, as their systemic exposure to metabolically derived oxymorphone (potent μ-opioid agonist) is very low, mirroring that seen in humans following oxycodone administration. Systemic exposure to oxycodone and noroxycodone was consistently higher for DA than for SD rats showing that strain differences predominated over diabetes status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AUC:

area under the serum concentration vs. time curve for parent drug or metabolite

AUC0–t:

area under the serum concentration vs. time 0, until the time of the last quantifiable serum drug/metabolite concentration

AUCt–∞:

area in the tail of the serum concentration vs. time curve for parent drug or metabolite; , terminal elimination rate constant

C last :

last quantifiable serum drug/metabolite concentration

C max :

maximum serum drug/metabolite concentration

CNS:

central nervous system

CYP:

cytochrome P450

DA:

dark agouti

HPLC–ESI–MS–MS:

high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry

SD:

Sprague–Dawley

SEM:

standard error of the mean

STZ:

streptozotocin

t 1/2 abs :

absorption half-life

t 1/2 elim :

terminal elimination half-life

T max :

time of maximum serum drug/metabolite concentration

References

  1. R. Pöyhia E. A. Kalso (1992) ArticleTitleAntinociceptive effects and central nervous system depression caused by oxycodone and morphine in rats Pharmacol. Toxicol. 70 125–130 Occurrence Handle1508838

    PubMed  Google Scholar 

  2. R. Pöyhia A. Vainio E. Kalso (1993) ArticleTitleA review of oxycodone’s clinical pharmacokinetics and pharmacodynamics J. Pain Symptom Manage. 8 63–67 Occurrence Handle10.1016/0885-3924(93)90101-Z Occurrence Handle8492004

    Article  PubMed  Google Scholar 

  3. K. P. Leow M. T. Smith (1994) ArticleTitleThe antinociceptive potencies of oxycodone, noroxycodone and morphine after intracerebroventricular administration to rats Life Sci. 54 1229–1236 Occurrence Handle10.1016/0024-3205(94)00849-3 Occurrence Handle8164504

    Article  PubMed  Google Scholar 

  4. C. K. Nielsen F. B. Ross M. T. Smith (2000) ArticleTitleIncomplete, asymmetric and route-dependent cross-tolerance between oxycodone and morphine in the dark agouti rat J. Pharmacol. Exp. Ther. 295 91–99 Occurrence Handle10991965

    PubMed  Google Scholar 

  5. M. H. Levy (2001) ArticleTitleAdvancement of opioid analgesia with controlled-release oxycodone Eur. J. Pain 5 IssueIDSuppl A 113–116 Occurrence Handle10.1053/eujp.2001.0292 Occurrence Handle11798230

    Article  PubMed  Google Scholar 

  6. E. Kalso R. Poyhia P. Onnela K. Linko I. Tigerstedt T. Tammisto (1991) ArticleTitleIntravenous morphine and oxycodone for pain after abdominal surgery Acta Anaesthesiol. Scand. 35 642–646 Occurrence Handle1785245

    PubMed  Google Scholar 

  7. T. Heiskanen E. Kalso (1997) ArticleTitleControlled-release oxycodone and morphine in cancer related pain Pain 73 37–45 Occurrence Handle10.1016/S0304-3959(97)00072-9 Occurrence Handle9414055

    Article  PubMed  Google Scholar 

  8. E. Bruera M. Belzile E. Pituskin R. Fainsinger A. Darke Z. Harsanyi N. Babul I. Ford (1998) ArticleTitleRandomized, double-blind, cross-over trial comparing safety and efficacy of oral controlled-release oxycodone with controlled-release morphine in patients with cancer pain J. Clin. Oncol. 16 3222–3229 Occurrence Handle9779695

    PubMed  Google Scholar 

  9. Z. R. Chen R. J. Irvine A. A. Somogyi F. Bochner (1991) ArticleTitleMu receptor binding of some commonly used opioids and their metabolites Life Sci. 48 2165–2171 Occurrence Handle10.1016/0024-3205(91)90150-A Occurrence Handle1851921

    Article  PubMed  Google Scholar 

  10. W. T. Beaver S. L. Wallenstein R. W. Houde A. Rogers (1977) ArticleTitleComparisons of the analgesic effects of oral and intramuscular oxymorphone and of intramuscular oxymorphone and morphine in patients with cancer J. Clin. Pharmacol. 17 186–198 Occurrence Handle66240

    PubMed  Google Scholar 

  11. R. F. Kaiko D. P. Benziger R. D. Fitzmartin B. E. Burke R. F. Reder P. D. Goldenheim (1996) ArticleTitlePharmacokinetic–pharmacodynamic relationships of controlled-release oxycodone Clin. Pharmacol. Ther. 59 52–61 Occurrence Handle10.1016/S0009-9236(96)90024-7 Occurrence Handle8549034

    Article  PubMed  Google Scholar 

  12. T. Heiskanen K. T. Olkkola E. Kalso (1998) ArticleTitleEffects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone Clin. Pharmacol. Ther. 64 603–611 Occurrence Handle10.1016/S0009-9236(98)90051-0 Occurrence Handle9871425

    Article  PubMed  Google Scholar 

  13. R. Pöyhia K. T. Olkkola T. Seppala E. Kalso (1991) ArticleTitleThe pharmacokinetics of oxycodone after intravenous injection in adults Br. J. Clin. Pharmacol. 32 516–518 Occurrence Handle1958450

    PubMed  Google Scholar 

  14. R. Pöyhia T. Seppala K. T. Olkkola E. Kalso (1992) ArticleTitleThe pharmacokinetics and metabolism of oxycodone after intramuscular and oral administration to healthy subjects Br. J. Clin. Pharmacol. 33 617–621 Occurrence Handle1389934

    PubMed  Google Scholar 

  15. F. B. Ross M. T. Smith (1997) ArticleTitleThe intrinsic antinociceptive effects of oxycodone appear to be κ-opioid receptor mediated Pain 73 151–157 Occurrence Handle10.1016/S0304-3959(97)00093-6 Occurrence Handle9415500

    Article  PubMed  Google Scholar 

  16. J. Cleary G. Mikus A. Somogyi F. Bochner (1994) ArticleTitleThe influence of pharmacogenetics on opioid analgesia: Studies with codeine and oxycodone in the Sprague–Dawley/dark agouti rat model J. Pharmacol. Exp. Ther. 271 1528–1534 Occurrence Handle7996467

    PubMed  Google Scholar 

  17. F. B. Ross S. C. Wallis M. T. Smith (2000) ArticleTitleCo-administration of sub-antinociceptive doses of oxycodone and morphine produces marked antinociceptive synergy with reduced CNS side-effects in rats Pain 84 421–428 Occurrence Handle10.1016/S0304-3959(99)00230-4 Occurrence Handle10666549

    Article  PubMed  Google Scholar 

  18. Y. Yamamoto T. Tasaki A. Nakamura H. Iwata A. Kazusaka F. J. Gonzal S. Fujita (1998) ArticleTitleMolecular basis of the dark agouti rat drug oxidation polymorphism: importance of CYP2D1 and CYP2D2 Pharmacogenetics 8 73–82 Occurrence Handle9511184

    PubMed  Google Scholar 

  19. B. Lalovic B. Phillips L. L. Risle W. Howald D. D. Shen (2004) ArticleTitleQuantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes Drug Metab. Dispos. 32 447–454 Occurrence Handle10.1124/dmd.32.4.447 Occurrence Handle15039299

    Article  PubMed  Google Scholar 

  20. J. Kamei Y. Ohhashi T. Aoki N. Kawasima Y. Kasuya (1992) ArticleTitleStreptozotocin-induced diabetes selectively alters the potency of analgesia produced by mu-opioid agonists, but not by δ- and κ-opioid agonists Brain Res. 571 199–203 Occurrence Handle10.1016/0006-8993(92)90655-S Occurrence Handle1319265

    Article  PubMed  Google Scholar 

  21. C. Courteix M. Bardin C. Chantelauze J. Lavarnne A. Eschalier (1994) ArticleTitleStudy of the sensitivity of the diabetes-induced pain model in rats to a range of analgesics Pain 57 153–160 Occurrence Handle10.1016/0304-3959(94)90218-6 Occurrence Handle8090511

    Article  PubMed  Google Scholar 

  22. C. Courteix P. Bourget F. Caussade M. Bardin F. Coudore J. Fialip A. Eschalier (1998) ArticleTitleIs the reduced efficacy of morphine in diabetic rats caused by alterations of opiate receptors or of morphine pharmacokinetics? J. Pharmacol. Exp. Ther. 285 63–70 Occurrence Handle9535995

    PubMed  Google Scholar 

  23. J. R. Zurek R. Nadeson C. S. Goodchild (2001) ArticleTitleSpinal and supraspinal components of opioid antinociception in streptozotocin induced diabetic neuropathy in rats Pain 90 57–63 Occurrence Handle10.1016/S0304-3959(00)00386-9 Occurrence Handle11166970

    Article  PubMed  Google Scholar 

  24. S. Lotfipour, F. B. Ross, K. Saini, and M. T. Smith. Oxycodone, but not morphine, is efficacious for the relief of tactile allodynia in diabetic rats at the three and six months after the induction of diabetes with streptozotocin. Abstracts10th World Congress on Pain, IASP Press, Seattle IASP Press, Seattle, 2002, p. 1131 (1531–P79), 2002.

  25. J. S. Gimbel P. Richards R. K. Portenoy (2003) ArticleTitleControlled-release oxycodone for pain in diabetic neuropathy: A randomized controlled trial Neurology 60 927–934 Occurrence Handle12654955

    PubMed  Google Scholar 

  26. C. P. N. Watson D. Moulin J. W. Watt-Watson A. Gordon J. Eisenhoffer (2003) ArticleTitleControlled-release oxycodone relieves neuropathic pain: a randomized controlled trial in painful diabetic neuropathy Pain 105 71–78 Occurrence Handle10.1016/S0304-3959(03)00160-X Occurrence Handle14499422

    Article  PubMed  Google Scholar 

  27. M. Gibaldi (1984) Biopharmaceutics and Clinical Pharmacokinetics Lea & Febiger Philadelphia

    Google Scholar 

  28. S. H. Weinstein J. C. Gaylord (1979) ArticleTitleDetermination of oxycodone in plasma and identification of a major metabolite J. Pharm. Sci. 68 527–528 Occurrence Handle35601

    PubMed  Google Scholar 

  29. B. Kest E. Hopkins C. A. Palmese M. Adler J. S. Mogil (2002) ArticleTitleGenetic variation in morphine analgesic tolerance: a survey of 11 inbred mouse strains Pharmacol. Biochem. Behav. 73 821–828 Occurrence Handle10.1016/S0091-3057(02)00908-5 Occurrence Handle12213527

    Article  PubMed  Google Scholar 

  30. B. Kest C. A. Palmese E. Hopkins M. Adler A. Juni J. S. Mogil (2002) ArticleTitleNaloxone-precipitated withdrawal jumping in 11 inbred mouse strains: Evidence for common genetic mechanisms in acute and chronic morphine physical dependence Neuroscience 115 463–469 Occurrence Handle10.1016/S0306-4522(02)00458-X Occurrence Handle12421612

    Article  PubMed  Google Scholar 

  31. J. S. Mogil E. J. Chesler S. G. Wilson J. M. Juraska W. F. Sternberg (2000) ArticleTitleSex differences in thermal nociception and morphine antinociception in rodents depend on genotype Neurosci. Biobehav. Rev. 24 375–389 Occurrence Handle10.1016/S0149-7634(00)00015-4 Occurrence Handle10781697

    Article  PubMed  Google Scholar 

  32. S. G. Wilson S. B. Smith E. J. Chesler K. A. Melton J. J. Haas B. Mitton K. Strasburg L. Hubert S. L. Rodriguez-Zas J. S. Mogil (2003) ArticleTitleThe heritability of antinociception: common pharmacogenetic mediation of five neurochemically distinct analgesics J. Pharmacol. Exp. Ther. 304 547–559 Occurrence Handle10.1124/jpet.102.041889 Occurrence Handle12538806

    Article  PubMed  Google Scholar 

  33. A. B. Wey W. Thormann (2002) ArticleTitleCapillary electrophoresis and capillary electrophoresis–ion trap multiple-stage mass spectrometry for the differentiation and identification of oxycodone and its major metabolites in human urine J. Chromatogr. B 770 191–205

    Google Scholar 

  34. S. R. Chen K. L. Sweigart J. M. Lakoski H. L. Pan (2002) ArticleTitleFunctional mu opioid receptors are reduced in the spinal cord dorsal horn of diabetic rats Anesthesiology 97 1602–1608 Occurrence Handle10.1097/00000542-200212000-00037 Occurrence Handle12459691

    Article  PubMed  Google Scholar 

  35. S. R. Chen H. L. Pan (2003) ArticleTitleAntinociceptive effect of morphine, but not mu opioid receptor number, is attenuated in the spinal cord of diabetic rats Anesthesiology 99 1409–1414 Occurrence Handle10.1097/00000542-200312000-00026 Occurrence Handle14639157

    Article  PubMed  Google Scholar 

  36. M. Patterson, F. B. Ross, and M. T. Smith. Differential changes in the potency of supraspinally administered oxycodone relative to morphine for the alleviation of tactile allodynia in adult male dark agouti rats with streptozotocin-induced diabetes. (Abstract) In W. C. Hodgson and R. E. Loiacono (eds.), Proc. Aust. Soc. Clin. Exp. Pharmacol. Toxicol., ASCEPT, 2001, p. 80

Download references

Acknowledgments

The authors wish to thank Ms. Loan Le and Ms. Margaret Patterson for their excellent technical assistance and Dr. Stephen Duffull for helpful pharmacokinetic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maree T. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Edwards, S.R. & Smith, M.T. Comparison of the Pharmacokinetics of Oxycodone and Noroxycodone in Male Dark Agouti and Sprague–Dawley Rats: Influence of Streptozotocin-Induced Diabetes. Pharm Res 22, 1489–1498 (2005). https://doi.org/10.1007/s11095-005-6154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-6154-y

Key Words

Navigation