Skip to main content

Advertisement

Log in

Lyophilized Paclitaxel Magnetoliposomes as a Potential Drug Delivery System for Breast Carcinoma via Parenteral Administration: In Vitro and in Vivo Studies

  • Research Papers
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

The study reports in vitro and biological evaluation of lyophilized negatively charged paclitaxel magnetic liposomes as a potential carrier for breast carcinoma via parenteral administration.

Methods.

Paclitaxel in magnetoliposomes were extracted by centrifugation and quantified by high-performance liquid chromatography (HPLC). Biological properties were studied using pharmacokinetics, in vivo distribution and cytotoxicity assays, as well as a mouse model of EMT-6 breast cancer.

Methods.

Pharmacokinetic studies showed that encapsulation of paclitaxel in magnetoliposomes produced marked difference over the drug in Cremophor EL/ethanol pharmacokinetics, with an increased t1/2β 19.37 h against 4.11 h. For in vivo distribution, paclitaxel concentration of lyophilized magnetoliposomes in the tumor was much higher than that of lyophilized conventional liposomes or Cremophor EL/ethanol, whereas in heart it was much lower than the latter two formulations via s.c. and i.v. administration. Lyophilized paclitaxel magnetic liposomes showed more potency on the therapy of breast cancer than other formulations via s.c. and i.p. administration.

Conclusions.

The current study demonstrates that paclitaxel magnetoliposomes can effectively be delivered to tumor and exert a significant anticancer activity with fewer side effects in the xenograft model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. E. C. K. Rowinsky, L. A. Cazenave, and R. C. Donehower. Taxol: a novel investigational antimicrotubule agent. J. Natl. Cancer Inst. 82:1247–1259 (1990).

    CAS  PubMed  Google Scholar 

  2. 2. E. K. Rowinsky, N. Onetto, R. M. Canetta, and S. G. Arbuck. Taxol: the first of the taxanes, an important new class of antitumor agents. Semin. Oncol. 19:646–662 (1992).

    CAS  PubMed  Google Scholar 

  3. 3. R. B. Weiss, R. C. Donehower, P. H. Wiernik, T. Ohnuma, R. J. Gralla, and D. Trump. Hypersensitivity reactions from taxol. J. Clin. Oncol. 8:1263–1268 (1990).

    CAS  PubMed  Google Scholar 

  4. 4. S. B. Horwitz. Mechanism of action of taxol. Trends Pharmacol. Sci. 13:134–136 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. 5. E. K. Rowinsky. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med. 48:353–374 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. 6. G. E. Capri, E. Tarenzi, F. Fulfaro, and L. Gianni. The role of taxanes in the treatment of breast cancer. Semin. Oncol. 23 (1. Suppl. 2):68–75 (1996).

    CAS  Google Scholar 

  7. 7. R. B. Weiss, R. C. Donehower, P. H. Wiernik, T. Ohnuma, R. J. Gralla, and D. Trump. Hypersensitivity reactions from taxol. J. Clin. Oncol. 8:1263–1268 (1990).

    CAS  PubMed  Google Scholar 

  8. 8. R. T. Dorr. Pharmacology and toxicology of Cremophor EL diluent. Ann. Pharmacother. 28:S11–S14 (1994).

    Google Scholar 

  9. 9. D. D. Lasic. Recent developments in medical applications of liposomes: sterically stabilized liposomes in cancer therapy and gene delivery in vivo J. Control. Release 48:203–222 (1997).

    Article  CAS  Google Scholar 

  10. 10. M. C. Woodle. Sterically stabilized liposome therapeutics. Adv. Drug Deliv. Rev. 16:249–265 (1997).

    Article  Google Scholar 

  11. 11. A. Sharma and R. M. Straubinger. Novel taxol formulations: preparation and characterization of taxol-containing liposomes. Pharm. Res. 11:889–896 (1994).

    CAS  PubMed  Google Scholar 

  12. 12. A. Sharma, E. Mayhew, and R. M. Straubinger. Antitumor effect of taxol-containing liposomes in a taxol-resistant murine tumor model. Cancer Res. 53:5877–5881 (1993).

    CAS  PubMed  Google Scholar 

  13. 13. R. Kirsh, P. J. Bugleski, and G. Poste. Drug delivery to macrophages for the therapy of cancer and infectious diseases. In: R. L. Juliano (ed.), Biological Approaches to the Controlled Delivery of Drugs, New York Academy of Sciences, New York, 1987, pp. 141–154.

    Google Scholar 

  14. 14. G. L. Scherphof. In vivo behavior of liposomes. In: R. L. Juliano (ed.), Targeted Drug Delivery, Springer, Berlin, New York, 1991, pp. 285–300.

    Google Scholar 

  15. 15. H. Kiwada, J. Sato, S. Yamada, and Y. Kato. Feasibility of magnetic liposomes as a targeting device for drugs. Chem. Pharm. Bull. (Tokyo) 34:4253–4258 (1986).

    CAS  Google Scholar 

  16. 16. M. Shinkai, M. Suzuki, S. Iijima, and T. Kobayashi. Antibody-conjugated magneto-liposomes for targeting cancer cells and their application in hyperthermia. Biotechnol Appl Bilchem 21:125–137 (1995).

    CAS  Google Scholar 

  17. 17. M. Shinkai, M. Yanase, H. Honda, T. Wakabayashi, J. Yoshida, and T. Kobayashi. Intrcellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Jpn. J. Cancer Res. 87:1179–1183 (1996).

    CAS  Google Scholar 

  18. 18. E. Viroonchatapan, M. Ueno, H. Sato, I. Adachi, H. Nagae, K. Tazawa, and I. Horikoshi. Preparation and characterization of dextran-magnetite incorporated thermosensitive liposomes: an on-line flow system for quantifying magnetic responsiveness. Pharm. Res. 12:1176–1183 (1995).

    CAS  PubMed  Google Scholar 

  19. 19. T. Kubo, T. Sugita, S. Shimose, Y. Nitta, Y. Ikuta, and T. Murakami. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int. J. Oncol. 17:309–315 (2000).

    CAS  PubMed  Google Scholar 

  20. 20. J. Sanyog, M. Vivek, S. Paramjit, P. K. Dubey, D. K. Saraf, and S. P. Vyas. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int. J. Pharm. 261:43–55 (2003).

    PubMed  Google Scholar 

  21. 21. S. L. Richheimer, D. M. Tinnermeier, and D. W. Timmons. High-performance liquid chromatographic assay of taxol. Anal. Chem. 64:2323–2333 (1992).

    CAS  Google Scholar 

  22. 22. J. Q. Zhang, Z. R. Zhang, and H. Luo. Determination of paclitaxel and the entrapment of its formulated preparations by RP-HPLC. West China J. Pharm. Sci. 16:96–97 (2001).

    CAS  Google Scholar 

  23. 23. T. D. Heath and C. S. Brown. Liposome dependent delivery of N-(phosphonacetyl)-L-aspartic acid to cells in vitro. J. Liposome Res. 1:303–317 (1989–90).

    Google Scholar 

  24. 24. C. Fonseca, S. Simoes, and R. Gaspar. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Rel. 83:273–286 (2002).

    CAS  Google Scholar 

  25. 25. Z. H. Ge, H. Li, J. F. Xue, and N. Wang. Determination of taxol in dog plasma, mouse tissue, and urine, feces by HPLC. Chin. J. Pharm. Anal 17:301–304 (1997).

    CAS  Google Scholar 

  26. 26. M. D. Bethesda. Division of cancer treatment, NCI. Clinical Brochure: Taxol (NSC 125973). National Cancer Institute, Frederick, MA, 1983, pp. 6–12.

  27. 27. National Institutes of Health. Principals of Laboratory Animal Care. Publication No.85-23. National Institutes of Health, Bethesda, MD: Revised 1985.

  28. 28. A. Sharma, E. Mayhew, L. Bolcsak, C. Cavanaugh, P. Harmon, A. Janoff, and R. J. Bernacki. Activity of paclitaxel liposome formulations against human ovarian tumor xenografts. Int. J. Cancer 71:103–107 (1997).

    CAS  PubMed  Google Scholar 

  29. 29. C. Paola, C. Maurizio, B. Paola, A. Silvia, D. Franco, and C. Luigi. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J. Control. Rel. 63:19–30 (2000).

    Google Scholar 

  30. 30. R. R. C. New. Introduction and preparation of liposomes. In R. R. C. New, (ed.), Liposomes: A Practical Approach, Oxford University Press, Oxford, 1990, pp. 1–104.

    Google Scholar 

  31. 31. T. Kubo, T. Sugita, S. Shimose, Y. Nitta, Y. Ikuta, and T. Murakami. Targeted systemic chemotherapy using magnetic liposomes with incorporated Adriamycin for osteosarcoma in hamsters. Int. J. Oncol. 18:121–125 (2001).

    CAS  PubMed  Google Scholar 

  32. 32. N. Hiroo, S. Takashin, K. Tadahiko, S. Shoji, Y. Yuji, M. Teruo, and O. Mitsuo. Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int. J. Cancer 109:627–635 (2004).

    PubMed  Google Scholar 

  33. 33. K. S. Wu, J. T. Tang, X. Liu, and Q. Zhang. Preparation of magnetoliposomes and its in vivo behavior on ICR mice. Yao Xue Xue Bao 39:288–291 (2004).

    PubMed  Google Scholar 

  34. 34. H. Shigeaki, T. Iwai, I. Akira, M. Kenji, S. Toshio, I. Masafumi, H. Hiroyuki, K. Takeshi, and U. Minoru. Selective hyperthermia using magnetoliposomes to target cervical lymph node metastasis in a rabbit tongue tumor model. Cancer Sci. 94:834–839 (2003).

    PubMed  Google Scholar 

  35. 35. A. Sharma, N. L. Straubinger, and R. M. Straubinger. Modulation of human ovarian tumor cell sensitivity to N-(phosphon-acetyl)-L-aspartate (PALA) by liposome drug carriers. Pharm. Res. 10:1434–1441 (1993).

    CAS  PubMed  Google Scholar 

  36. 36. M. Thole, S. Nobmanna, J. Huwyler, A. Bartmann, and G. Fricker. Uptake of cationzied albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries. J. Drug Target. 10:337–344 (2002).

    CAS  PubMed  Google Scholar 

  37. 37. P. K. Gupta and C. T. Hung. Comparative disposition of adriamycin delivered via magnetic albumin microspheres in presence and absence of magnetic field in rats. Life Sci. 46:471–479 (1990).

    CAS  PubMed  Google Scholar 

  38. 38. L. B. Margolis and V. A. Namiot. L. M. Kliukin- cell sorting using magnetoliposomes. Biofizika 28:884–885 (1983).

    CAS  PubMed  Google Scholar 

  39. 39. C. A. Alexios, W. Arnold, R. J. Klein, F. G. Parak, P. Hulin, C. Bergmann, W. Erhardt, S. Wagenpfeil, and A. S. Lubbe. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60:6641–6648 (2000).

    PubMed  Google Scholar 

  40. 40. A. S. Lubbe, C. Bergemann, W. Huhnt, T. Fricke, H. Riess, J. W. Huhn, and D. Huhn. Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res. 56:4694–4701 (1996).

    CAS  PubMed  Google Scholar 

  41. 41. A. S. Lubbe, C. Bergemann, H. Riess, F. Schriver, P. Reichardt, K. Mattias, M. Matthias, B. Dorken, F. Herrmann, R. Gurtler, P. Haas, N. Haas, R. Schr, B. Sander, A. J. Lemke, D. Ohlendorf, W. Huhnt, and D. Huhn. Clinical experiences with magnetic drug targeting: a Phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56:4686–4693 (1996).

    CAS  PubMed  Google Scholar 

  42. 42. A. Sharma, W. D. Conway, and R. M. Straubinger. Reversed-phase high-performance liquid chromatographic determination of taxol in mouse plasma. J. Chromatogr B. 655:315–319 (1994).

    CAS  Google Scholar 

  43. 43. M. Babincova, P. Cicmanec, and V. Atlanerova. AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy. Bioelectrochemistry 55:17–19 (2002).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Q. Zhang or Z. R. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhang, Z., Yang, H. et al. Lyophilized Paclitaxel Magnetoliposomes as a Potential Drug Delivery System for Breast Carcinoma via Parenteral Administration: In Vitro and in Vivo Studies. Pharm Res 22, 573–583 (2005). https://doi.org/10.1007/s11095-005-2496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-2496-8

Key Words:

Navigation