Skip to main content
Log in

Novel Film Modifiers to Alter the Physical Properties of Composite Ethylcellulose Films

  • Research Papers
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

Polyvinylpyrrolidone (PVP), molecular-composite PVP, and Plasdone S-630 copolyvidonum are potential polymeric film modifiers for achieving improved drug release. The aim of this study was to investigate how these polymeric additives would affect the physicomechanical properties of composite ethylcellulose films.

Methods.

The miscibility of these polymeric additives with ethylcellulose was determined from the differential scanning calorimetry (DSC) thermograms of various polymer blends formed from organic solvents. It was found that ethylcellulose (EC) was miscible with the polymeric additives up to a concentration of 50%. Ten percent to 30% w/w polymeric additives were then added to aqueous ethylcellulose dispersion to form composite films. The morphology, film transparency, dynamic mechanical analysis (DMA) thermograms, and mechanical properties of the composite ethylcellulose films were studied. In addition, puncture strength and % elongation of the dry and wet films were also compared from indentation test.

Results.

Significant reduction and change in film transparency and morphology was obtained for EC films blended with PVP of higher molecular weight (MW). The composite EC films also showed higher Tg, greater elastic modulus, tensile and puncture strength depending on the concentration and type of additives present.

Conclusions.

The interaction between ethylcellulose and the polymeric additives is dependent on the MW and concentration of additives. The composite films offer new opportunities for the use of ethylcellulose as modified release coatings for dosage forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. G. V. Savage and C. T. Rhodes. The sustained release coating of solid dosage Forms: A historical review. Drug Dev. Ind. Pharm. 21:93–118 (1995).

    Google Scholar 

  2. 2. S. C. Porter. Controlled-release film coatings based on ethylcellulose. Drug Dev. Ind. Pharm. 15:1495–1521 (1989).

    Google Scholar 

  3. 3. G. S. Rekhi and S. S. Jambhekar. Ethylcelluose—a polymer review. Drug Dev. Ind. Pharm. 21:61–77 (1995).

    Google Scholar 

  4. 4. B. C. Lippold, B. K. Sutter, and B. C. Lippold. Parameters controlling drug release from pellets coated with aqueous ethyl cellulose dispersion. Int. J. Pharm. 54:15–25 (1989).

    Google Scholar 

  5. 5. W. Gunder, B. H. Lippold, and B. C. Lippold. Release of drugs from ethylcellulose microcapsules (diffusion pellets) with pore formers and pore fusion. Eur. J. Pharm. Sci. 3:203–214 (1995).

    Google Scholar 

  6. 6. H. P. Osterwald. Properties of film-formers and their use in aqueous systems. Pharm. Res. 2:14–18 (1985).

    Google Scholar 

  7. 7. S. Narisawa, H. Yoshino, Y. Hirakawa, and K. Noda. Porosity-controlled ethylcellulose film coating. I. Formation of porous ethylcellulose film in the casting process and factors affecting film-density. Chem. Pharm. Bull. (Tokyo) 41:329–334 (1993).

    Google Scholar 

  8. 8. S. Narisawa, H. Yoshino, Y. Hirakawa, and K. Noda. Porosity-controlled ethylcellulose film coating. II. Spontaneous porous film formation in the spraying process and its solute permeability. Int. J. Pharm. 104:95–106 (1994).

    Google Scholar 

  9. 9. M. A. Frohoff-Hulsmann, B. C. Lippold, and J. W. Mcginity. Aqueous ethyl cellulose dispersion containing plasticizers of different water solubility and hdroxypropyl methylellulose as coating material for diffusion pellets II: properties of sprayed films. Eur. J. Pharm. Biopharm. 48:67–75 (1999).

    Google Scholar 

  10. 10. M. A. Frohoff-Hulsmann, A. Schmitz, and B. C. Lippold. Aqueous ethyl cellulose dispersions containing plasticizers of different water solubility and hydroxypropyl methylcellulose as coating material for diffusion pellets I. Drug release rates from coated pellets. Int. J. Pharm. 177:69–82 (1999).

    Google Scholar 

  11. 11. C. A. Gilligan and A. L. Wan Po. Factors affecting drug release from a pellet system coated with an aqueous dispersion. Int. J. Pharm. 73:51–68 (1991).

    Google Scholar 

  12. 12. J. Hjärtstam and T. Hjertberg. Swelling of pellets coated with a composite film containing ethylcellulose and hydroxypropyl methylcellulose. Int. J. Pharm. 161:23–28 (1998).

    Google Scholar 

  13. 13. K. Umprayn, P. Chitropas, and S. Amarekajorn. Development of terbutaline sulfate sustained-release coated pellets. Drug Dev. Ind. Pharm. 25:477–491 (1999).

    Google Scholar 

  14. 14. T. Yamada, H. Onishi, and Y. Machida. Sustained release ketoprofen microparticles with ethylcellulose and carboxymethylethylcellulose. J. Control. Release 75:271–282 (2001).

    Google Scholar 

  15. 15. C. Sánchez-Lafuente, M. T. Faucci, M. Fernández-Arévalo, J. álvarez-Fuentes, A. M. Rabasco, and P. Mura. Development of sustained release matrix tablets of didanosine containing methacrylic and ethylcellulose polymers. Int. J. Pharm. 234:213–221 (2002).

    Google Scholar 

  16. 16. T. Y. Fan, S. L. Wei, W. W. Yan, D. B. Chen, and J. Li. An investigation of pulsatile release tablets with ethylcellulose and Eudragit L as film coating materials and cross-linked polyvinylpyrrolidone in the core tablets. J. Control. Release 77:245–251 (2001).

    Google Scholar 

  17. 17. W. Phuapradit, N. H. Shah, A. Railkar, L. Williams, and M. H. Infeld. In vitro characterization of polymeric membrane used for controlled release application. Drug Dev. Ind. Pharm. 21:955–963 (1995).

    Google Scholar 

  18. 18. G. S. Macleod, J. T. Fell, and J. H. Collett. Studies on the physical properties of mixed pectin/ethylcellulose films intended for colonic drug delivery. Int. J. Pharm. 157:53–60 (1997).

    Google Scholar 

  19. 19. B. D. Rohera and N. H. Parikh. Influence of type and level of water-soluble additives on drug release and surface and mechanical properties of Surelease films. Pharm. Dev. Technol. 7:421–432 (2002).

    Google Scholar 

  20. 20. P. Sakellariou, R. C. Rowe, and E. F. T. White. Polymer/polymer interaction in blends of ethylcellulose with both cellulose derivatives and polyethylene glycol 6000. Int. J. Pharm. 34:93–103 (1986).

    Google Scholar 

  21. 21. M. Donbrow and M. Friedman. Enhancement of permeability of ethylcellulose films for drug penetration. J. Pharm. Pharmacol. 27:633–646 (1975).

    Google Scholar 

  22. 22. M. Donbrow and Y. Samuelov. Zero order drug delivery from double-layered porous films: release rate profiles from ethyl cellulose, hdroxypropyl cellulose and polyethylene glycol mixtures. J. Pharm. Pharmacol. 32:463–470 (1980).

    Google Scholar 

  23. 23. T. Lindholm and M. Juslin. Controlled release tablets: Part 3: Ethylcellulose coats containing surfactant and powdered matter. Pharm. Ind. 44:937–941 (1982).

    Google Scholar 

  24. 24. A. Wade and P. J. Weller. Povidone. In A. H. Kibbe (ed.), Handbook of Pharmaceutical Excipients, 2nd edition. Pharmaceutical Press, London, 1994, pp. 392–399.

    Google Scholar 

  25. 25. L. Blecher, D. H. Lorenz, H. L. Lowd, A. S. Wood, and D. P. Wyman. Polyvinylpyrrolidone. In R. L. Davidson (ed.), Handbook of Water-Soluble Gums and Resins. Mc-Graw-Hill, New York, 1980, Chap. 21, pp. 21-1–21-22

    Google Scholar 

  26. 26. B. A. S. F. Fine Chemicals. Kollidone® grades, MEF 129e. BASF Corporation Chemicals Division, Ludwigshafen, Germany, 1986.

  27. 27. C. M. Aldeyeye and E. Barabas. Polyvinylpyrrolidone (Povidone). Analytic Profiles Drug Substances Excipients 22:555–685 (1993).

    Google Scholar 

  28. 28. V. Kumar, T. Yang, and Y. Yang. Interpolymer complexation. Part 1. Preparation and characterization of a polyvinyl acetate phthalate-polyvinylpyrrolidone (PVAP-PVP) complex. Int. J. Pharm. 188:221–232 (1999).

    Google Scholar 

  29. 29. D. K. Hood, L. Senak, S. L. Kopolow, M. A. Tallon, Y. T. Kwak, D. Patel, and J. Mckittrick. Structural insights into a novel molecular-scale composite of soluble poly(vinyl pyrrolidone) supporting uniformly dispersed nanoscale poly(vinyl pyrrolidone) particles. J. Appl. Polym. Sci. 89:734–741 (2003).

    Google Scholar 

  30. 30. G. Zingone and F. Rubessa. Release of carbamazepine from solid dispersions with polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA). STP Pharma Sci. 4:122–127 (1994).

    Google Scholar 

  31. 31. M. Dittgen, M. Durrani, and K. Lehmann. Acrylic polymers—a review of pharmaceutical applications. STP Pharma. Sci. 7:403–437 (1997).

    Google Scholar 

  32. 32. S. Benita, P. Dor, M. Aronhime, and G. Marom. Permeability and mechanical properties of a new polymer: cellulose hydrogen phthalate. Int. J. Pharm. 33:71–80 (1986).

    Google Scholar 

  33. 33. E. M. G. VanBommel, J. G. Fokkens, and D. J. A. Crommelin. Effects of additives on the physicochemical properties of sprayed ethylcellulose films. Acta Pharm. Technol. 35:232–237 (1989).

    Google Scholar 

  34. 34. S. V. Lafferty, J. M. Newton, and F. Podczeck. Dynamic mechanical thermal analysis studies of polymer films prepared from aqueous dispersion. Int. J. Pharm. 235:107–111 (2002).

    Google Scholar 

  35. 35. P. W. S. Heng, L. W. Chan, and K. T. Ong. Influence of storage conditions and type of plasticizers on ethylcellulose and acrylate films formed from aqueous dispersions. J. Pharm. Pharm. Sci. 6:334–344 (2003).

    Google Scholar 

  36. 36. R. Bodmeier and O. Paeratakul. Mechanical properties of dry and wet cellulosic and acrylic films prepared from aqueous colloidal polymer dispersions used in the coating of solid dosage forms. Pharm. Res. 11:882–888 (1994).

    Google Scholar 

  37. 37. O. Olabisi, L. M. Robeson, and M. T. Shaw. Polymer—Polymer Miscibility. Academic Press, New York, 1979.

    Google Scholar 

  38. 38. P. Sakellariou and R. C. Rowe. Interactions in cellulose derivative films for oral drug delivery. Prog. Polym. Sci. 20:889–942 (1995).

    Google Scholar 

  39. 39. M. Song, A. Hammiche, H. M. Pollock, D. J. Hourston, and M. Reading. Modulated differential scanning calorimetry: 4. Miscibility and glass transition behavior in poly (methylmethacrylate) and poly(epichlorohydrin) blends. Polym. 37:5661–5665 (1996).

    Google Scholar 

  40. 40. N. Nyamweya and S. W. Hoag. Assessment of polymer-polymer interactions in blends of HPMC and film forming polymers by modulated temperature differential scanning calorimetry. Pharm. Res. 17:625–631 (2000).

    Google Scholar 

  41. 41. R. E. Wetton, R. D. L. Marsh, and J. G. Van-de-Velde. Theory and application of dynamic mechanical thermal analysis. Thermochim. Acta 175:1–11 (1991).

    Google Scholar 

  42. 42. Y. Nishio and R. S. Manley. Cellulose/poly(vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride. Macromolecules 21:1270–1277 (1988).

    Google Scholar 

  43. 43. J. S. Park, J. W. Park, and E. Ruckenstein. A dynamic mechanical and thermal analysis of unplasticized and plasticized poly(vinyl alcohol)/methylcellulose blends. J. Appl. Polym. Sci. 80:1825–1834 (2001).

    Google Scholar 

  44. 44. S. Honary and H. Orafai. The effect of different plasticizer molecular weights and concentrations on mechanical and thermomechanical properties of free films. Drug Dev. Ind. Pharm. 28:711–715 (2002).

    Google Scholar 

  45. 45. T. T. Kararli, J. B. Hurlbut, and T. E. Needham. Glass-rubber transitions of cellulosic polymers by dynamic mechanical analysis. J. Pharm. Sci. 79:845–848 (1990).

    Google Scholar 

  46. 46. In T. Murayama (ed.). Dynamic Mechanical Properties of Polymeric Materials. Material Science Monographs, Vol. 1. Elsevier, Amsterdam, 1978.

  47. 47. In L. E. Nielson (ed.). Mechanical Properties of Polymers and Composites, Vol. 1. Marcel Dekker, New York, 1974, Chap. 4, pp. 131–232.

  48. 48. R. F. Boyer. In E. Bear, S. V. Radcliffe (eds.), Polymer Materials: Relationship between Structure and Mechanical Behavior, American Society for Metals, Metals Park, OH, 1974, pp 227–368.

    Google Scholar 

  49. 49. R. Nair, N. Nyamweya, S. Gönen, L. J. Martínez-Miranda, and S. W. Hoag. Influence of various drugs on the glass transition temperature of poly(vinylpyrrolidone): a thermodynamic and spectroscopic investigation. Int. J. Pharm. 225:83–96 (2001).

    Google Scholar 

  50. 50. Gordon and J. S. Taylor. Ideal copolymers and the second order transition of synthetic rubbers 1. Non-crystalline co-polymers. J. Appl. Chem. 2:493–500 (1952).

    Google Scholar 

  51. 51. R. Simha and R. F. Boyer. On a general relation involving the glass temperatures and coefficients of expansion of polymers. J. Chem. Phys. 37:1003–1007 (1962).

    Google Scholar 

  52. 52. A. Hale and H. E. Blair. Polymer blends and block copolymers. In E. A. Turi (ed.), Thermal Characterization of Polymeric Materials, 2nd edition. Academic Press, San Diego, 1997, pp. 745–886.

    Google Scholar 

  53. 53. L. S. Taylor and G. Zografi. Sugar-polymer hydrogen bond interactions in lyophilized amorphous mixtures. J. Pharm. Sci. 87:1615–1621 (1998).

    Google Scholar 

  54. 54. Y. Nishio, T. Haratani, and T. Takahashi. Miscibility and orientation behavior of poly(vinyl alcohol)/poly(vinyl pyrrolidone) blends. J. Polym. Sci.: Part B: Polymer Physics 28:377–386 (1990).

    Google Scholar 

  55. 55. J. P. Dechesne, J. Vanderschueren, and F. Jaminet. Influence des plastifiants sur la temperature de transition vitreuse de filmogenes gastroresistants enterosolubles. J. Pharm. Belg. 39:341–347 (1984).

    Google Scholar 

  56. 56. P. Sakellariou. Effect of polymer miscibility on surface enrichment in polymer blends. Polym. 34:3408–3415 (1993).

    Google Scholar 

  57. 57. P. Sakellariou and R. C. Rowe. Phase-separation and morphology in ethylcellulose cellulose-acetate phthalate blends. J. Appl. Polym. Sci. 43:845–855 (1991).

    Google Scholar 

  58. 58. J. W. Mauger. Experimental methods to evaluate diffusion coefficients and investigate transport processes of pharmaceutical interest. In: G. L. Amidon, P. I. Lee, and E. M. Topp (eds.), Transport Processes in Pharmaceutical Systems. Marcel Dekker, New York, 1999, pp. 87–107.

    Google Scholar 

  59. 59. M. E. Aulton, M. H. Abdul Razzak, and J. E. Hogan. Mechanical properties of hydroxypropylmethylcellulose films derived from aqueous systems. Part 2. Influence of solid inclusions. Drug Dev. Ind. Pharm. 10:541–561 (1984).

    Google Scholar 

  60. 60. R. C. Rowe. The cracking of film coatings on film-coated tablets—a theoretical approach with practical implications. J. Pharm. Pharmacol. 323:423–426 (1981).

    Google Scholar 

  61. 61. R. C. Rowe. Defects in film-coated tablets: aetiology and solutions. In D. Granderton and T. M. Jones (eds.), Advances in Pharmaceutical Sciences, Vol. 6. Academic Press, London, 1992, pp. 65–100.

    Google Scholar 

  62. 62. S. G. Croll. The origin of residual internal stress in solvent-cast thermoplastic coatings. J. App. Pol. Sci. 23:847–858 (1979).

    Google Scholar 

  63. 63. K. Sato. The internal stress of coating films. Prog. Organ. Coating 8:143–160 (1980).

    Google Scholar 

  64. 64. R. C. Rowe. Correlations between the in-situ performance of tablet film coating formulations based on hydroxypropyl methylcellulose and data obtained from the tensile testing of free films. Acta Pharm. Technol. 29:205–207 (1983).

    Google Scholar 

  65. 65. E. Okutgen, J. E. Hogan, and M. E. Aulton. Effects of tablet core dimensional instability on the generation of internal stresses within film coats. Part 3. Exposure to temperatures and relative humidities which mimic the film coating process. Drug Dev. Ind. Pharm. 17:2005–2016 (1991).

    Google Scholar 

  66. 66. M. Tarvainen, R. Sutinen, S. Peltonen, H. Mikkonen, J. Maunus, K. Vähä-Heikkilä, V. P. Lehto, and P. Paronen. Enhanced film-forming properties for ethyl cellulose and starch acetate using n-alkenyl succinic anhydrides as novel plasticizers. Eur. J. Pharm. Sci. 19:363–371 (2003).

    Google Scholar 

  67. 67. E. S. Barabas. Vinyl alkyl ether polymers. In H. F. Mark (ed.), Encyclopedia of Polymer Science and Engineering: Vol. 17. Wiley-Interscience, New York, 1989, pp. 198.

    Google Scholar 

  68. 68. A. O. Okhamafe and P. York. Interaction phenomena in pharmaceutical film coatings and testing methods. Int. J. Pharm. 39:1–21 (1987).

    Google Scholar 

  69. 69. G. W. Radebaugh, J. L. Murtha, T. N. Julian, and J. N. Bondi. Methods for evaluating the puncture and shear properties of pharmaceutical polymeric films. Int. J. Pharm. 45:39–46 (1988).

    Google Scholar 

  70. 70. C. Remunan-Lopez and R. Bodmeier. Mechanical water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. J. Control. Rel. 44:215–225 (1997).

    Google Scholar 

  71. 71. F. W. Harris. Introduction to polymer chemistry. In State of the Art III: Polymer Chemistry, American Chemical Society, 1981, pp. 837–843.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Wan Sia Heng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, L., Ong, K. & Heng, P. Novel Film Modifiers to Alter the Physical Properties of Composite Ethylcellulose Films. Pharm Res 22, 476–489 (2005). https://doi.org/10.1007/s11095-004-1886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-004-1886-7

Key words:

Navigation