Skip to main content

Advertisement

Log in

Potential Directions in the Use of Graphene Nanomaterials in Pharmacology and Biomedicine (Review)

  • MOLECULAR BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

This article provides a brief review of the current scientific literature on the structure, properties, and preparation of graphene nanomaterials (GNM) and their potential uses in pharmacology and biomedicine. The most important members of the graphene family are graphene itself and its oxide. GNM have been shown to have a set of unique physicochemical properties and have been studied intensely as substances for targeted drug delivery, gene transfection, hyperthermia, etc. GNM are regarded as potential nanomaterials for making implants and prostheses, and also as antibacterial substances. Problems facing researchers and requiring solution for successful introduction of GNM into practice are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. R. E. Peierls, Helvetica Phys. Acta., 7, 81 – 83 (1934).

    CAS  Google Scholar 

  2. L. D. Landau, Zh. Teor. Éksp. Fiz., 7, 627 – 632 (1937).

    Google Scholar 

  3. E. D. Graifer, V. G. Makotchenko, A. S. Nazarov, et al., Usp. Khim., 80(8), 784 – 804 (2011).

    Google Scholar 

  4. A. G. Aleksenko, Graphene [in Russian], Knowledge Laboratory, Moscow (2014).

    Google Scholar 

  5. A. C. Ferrari, F. Bonaccorso, V. Fal’ko, et al., Nanoscale, 7(15), 4598 – 4810 (2015).

  6. A. N. Banerje, Glob. J. Nano., 1(1), ID: 555552 (2016).

  7. I. I. Kulakova and G. V. Lisichkin, Zh. Obshch. Khim., 90(10), 1601 – 1626 (2020).

    Google Scholar 

  8. G. V. Lisichkin, A. Yu. Olenin, and I. I. Kulakova, Inorganic Nanoparticle Surface Chemistry [in Russian], Tekhnosfera, Moscow (2021), chapter 6.

    Google Scholar 

  9. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science, 5696, 666 – 669 (2004).

    Article  Google Scholar 

  10. R. Kumar, B. R. Mehta, M. Bhatnagar, et al., Nanoscale Res. Lett., 9, Article No. 349 (2014).

  11. S. P. Gubin and S. V. Tkachev, Graphene and Related Nanoforms of Carbon [in Russian], URSS, Moscow (2019).

    Google Scholar 

  12. N. V. Pykhova, N. V. Negutorov, A. N. Zhanakhova, et al., Butlerov. Soobshch., 58(4), 102–109 (2019).

    Article  Google Scholar 

  13. M. Li, D. Liu, D. Wei, et al., Adv. Sci., 3(11), ID: 1600003 (2016).

  14. H. Tetlow, J. P. deBoer, I. J. Ford, et al., Phys. Rep., 542(3), 195 – 295 (2014).

    Article  CAS  Google Scholar 

  15. R. Kumar and B. R. Mehta, J. Nanosci. Nanotechnol., 17(1), 286 – 299 (2016).

    Article  Google Scholar 

  16. M. B. Shavelkina, R. Kh. Amirov, A. S. Tyuftyaev, et al., Khim. Vysok. Énerg., 53(5), 380 – 384 (2019).

    Google Scholar 

  17. M. B. Shavelkina, R. Kh Amirov, D. I. Kavyrshin, et al., Usp. Prikl. Fiz., 7(2), 97 – 116 (2019).

    Google Scholar 

  18. G. R. Yazdi, T. Iakimov, and R. Yakimova, Crystals, 6(5), 53 – 74 (2016).

    Article  Google Scholar 

  19. Yu. M. Shul’ga, N. Yu. Shul’ga, and Yu. N. Parkhomenko, Izv. Vuz. Mater. Élektron. Tekhn., 17(3), 157 – 167 (2014).

    Google Scholar 

  20. S. V. Tkachev, E. Yu. Buslaeva, A. V. Naumkin, et al., Neorgan. Mater., 48(8), 909 – 915 (2012).

    Google Scholar 

  21. J. Liu, J. Tang, and G. Gooding, J. Mater. Chem., 22(25), 12,435 – 12,452 (2012).

  22. S. Pei, Q. Wei, K. Huang, et al., Nat. Commun., 9(1), Article number: 145 (2018).

  23. S. Bose, T. Kuila, A. K. Mishra, et al., J. Mater. Chem., 22(19), 9696 – 9703 (2012).

    Article  CAS  Google Scholar 

  24. S. Pei and H.-M. Cheng, Carbon, 50(9), 3210 – 3228 (2012).

    Article  CAS  Google Scholar 

  25. M. Rabchinskii, S. Ryzhkov, et al., Sci. Rep., 10, ID: 6902 (2020).

  26. K. P. Loh, Q. Bao, P. K. Ang, et al., J. Mater. Chem., 20, 2277 – 2289 (2010).

    Article  CAS  Google Scholar 

  27. P. Kamat, J. Phys. Chem. Lett., 1, 520 – 527 (2010).

    Article  CAS  Google Scholar 

  28. A. Wojcik and P. V. Kamat, ACS Nano, 4, 6697 – 6706 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. D. W. Lee and J. W. Seo, J. Phys. Chem. C, 115(6), 2705 – 2708 (2011).

    Article  CAS  Google Scholar 

  30. Z. Sun, S.-I. Kohama, Z. Zhang, et al., Nano Res., 3, 117 –125 (2010).

    Article  CAS  Google Scholar 

  31. C. Shan, H. Yang, D. Han, et al., Langmuir, 25(20), 12,030–12,033 (2009).

  32. K. Yang, Y. Li, X. Tan, et al., Small, 9(9 – 10), 1492 – 1503 (2013).

  33. W. Zhang, Z. Guo, D. Huang, et al., Biomaterials, 32(33), 8555 – 8561 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. T. Zhou, X. Zhou, D. Xing, Biomaterials, 35(13), 4185 – 4194 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Y.-M. Zhanget, Y. Cao, Y. Yang, et al., Chem. Comm., 50(86), 13,066 – 13,069 (2014).

  36. Z. Liu, J. T. Robinson, X. Sun, et al., J. Am. Chem. Soc., 130(33), 10,876 – 10,877 (2008).

  37. L. Tian, X. Pei, Y. Zeng, et al., J. Nanopart. Res., 16(11), 1 – 14 (2014).

    Google Scholar 

  38. H. Kim, R. Namgung, K. Singha, et al., Bioconjugate Chem., 22(12), 2558 – 2567 (2011).

    Article  CAS  Google Scholar 

  39. Q. Peng, A. K. Dearden, J. Crean, et al., Nanotechnol. Sci. Appl., 7(1), 1 – 29 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. H. Y. Mao, S. Laurent, W. Chen, et al., Chem. Rev., 113(5), 3407 – 3424 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. K. Yang, J. Wan, S. Zhang, et al., ACS Nano, 5(1), 516 – 522 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Z. Liu, J. T. Robinson, X. M. Sun, et al., J. Am. Chem. Soc., 130(33), 10,876 – 10,877 (2008).

  43. S. V. Poroiskii, T. A. Nosaeva, and N. V. Konyaeva, Volgogradskii Nauchn.-Med. Zh., No. 3, 9 – 10 (2014).

  44. I. Ali, M. N. Lone, M. Suhail, et al., Curr. Med. Chem., 23(999), 2159 – 2187 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Y. Hu, F. Li, D. Han, et al., in: Biocompatible Graphene for Bioanalytical Applications, Springer Science + Business Media (2015).

    Book  Google Scholar 

  46. D. Kireev, Graphene in Medicine pir Postnauka, publ. January 16, 2020; https: // fiopsite / press-tsentr / smi / smi-o-fonde / 20200117-postnauka- grafen-v-meditsine / .

  47. X. Xu, X. Chen, P. Ma, et al., Eur. J. Pharm. Biophys., 70, 165 – 170 (2008).

    Article  CAS  Google Scholar 

  48. M. G. Burdanova, M. V. Kharlamova, C. Kramberger, et al., Nanomaterials, 11(11), Article No. 3020 (2021).

  49. L. Zhang, J. Xia, Q. Zhao, et al., Small, 6, 537 – 544 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. J. Liu, L. Cui, and D. Losic, Acta Biomater., 9(12), 9243 – 9257 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. E. Einafshar, A. A. Haghighi, N. A. Hashem, et al., Nanomed. J., 5(4), 210 – 216 (2018).

    CAS  Google Scholar 

  52. F. Emadi, A. Emadi, and A. Gholami, Curr. Pharm. Biotechnol., 21(11), 1016 – 1027 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. A. G. Kazakov, B. Garashchenko, R. Yu. Yakovlev, et al., Diamond Relat. Mater., 104, 10,772 – 10,776 (2020).

  54. L. Chen, X. Zhong, X. Yi, et al., Biomaterials, 66, 21 – 28 (2015).

    Article  PubMed  Google Scholar 

  55. K. Yang, S. Zhang, G. Zhang, et al., Nano Lett., 10, 3318 – 3323 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. I. I. Kulakova and G. V. Lisichkin, Zh. Prikl. Khim., 94(9), 92 – 98 (2021).

    Google Scholar 

  57. Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic- Markovic, et al., Biomaterials, 32, 1121 – 1129 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. X. Liu, H. Tao, K. Yang, et al., Biomaterials, 32, 144 – 151 (2011).

    Article  PubMed  Google Scholar 

  59. R. G. Mendes, A. Bachmatiuk, B. Buechner, et al., J. Mater. Chem. B, 1, 401 – 428 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. A. R. Biris, M. Mahmood, M. D. Lazar, et al., J. Phys. Chem. C, 115, 18,967 – 18,976 (2011).

  61. M. Vincent, I. De Lázaro, K. Kostarelos, Gene Ther., 24(3), 123 – 132 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. L. Feng, S. Zhang, Z. Liu, Nanoscale, 3, 1252 – 1257 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. I. De Lázaro, S. Vranic, D. Marson, et al., Nanoscale, 11(29), 13,863 – 13,877 (2019).

  64. I. De Lázaro and K. Kostarelos, Sci. Rep., 9(1), 1 – 10 (2019).

    Article  Google Scholar 

  65. S. Howorka, Z. Siwy, Chem. Soc. Rev., 38, 2360 – 2384 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. J. Sha, T. Hasan, S. Milana, et al., ACS Nano, 7, 8857 – 8869 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. D. Branton, D. W. Deamer, A. Marziali, et al., Nature Biotechnol., 26, 1146 – 1153 (2008).

    Article  CAS  Google Scholar 

  68. K. R. Lieberman, G. M. Cherf, M. J. Doody, et al., J. Am. Chem. Soc., 132, 17,961 – 17,972 (2010).

  69. G. F. Schneider and C. Dekker, Nature. Biotechnol., 30, 326 – 332 (2012).

    Article  CAS  Google Scholar 

  70. Q. Xu, M.-Y. Wu, G. F. Schneider, et al., ACS Nano, 7, 1566 – 1572 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. G. F. Schneider, Q. Xu, S. Hage, et al., Nat. Commun., 4, Article No. 2619 (2013).

  72. G. F. Schneider, S. W. Kowalczyk, V. E. Calado, et al., Nano Lett., 10, 3163 – 3167 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. C. A. Merchant, K. Healy, M. Wanunu, et al., Nano Lett., 10, 2915 – 2921 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. D. Stoddart, A. J. Heron, E. Mikhailova, et al., Proc. Natl. Acad. Sci. USA, 106, 7702 – 7707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. J. F. Thompson and P. Milos, Genome Biol., 12(2), 217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. A. Morin, D. Lucot, A. Ouerghi, et al., Microelectron. Eng., 97, 311 – 316 (2012).

    Article  CAS  Google Scholar 

  77. O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, et al., J. Nanotechnol., 22(17), 17,5306 (2011).

    Article  CAS  Google Scholar 

  78. L. Wang, M. S. H. Boutilier, P. R. Kidambi, et al., Nature Nanotechnol., 12, 509 – 522 (2017).

    Article  Google Scholar 

  79. P. L. Neumann, E. Tovari, S. Csonka, et al., Nucl. Instrum. Methods Phys. Res. B, 282, 130 – 133 (2012).

    Article  CAS  Google Scholar 

  80. R. V. Lapshin, Appl. Surf. Sci., 360, 451 – 460 (2016).

    Article  CAS  Google Scholar 

  81. W. Reisner, J. N. Pedersen, and R. H. Austin, Rep. Prog. Phys., 75, Article No. 106601 (2012).

  82. H. Lee, N. Lee, Y. Seo, et al., Nanotechnology, 20(32), Article No. 325701 (2009).

  83. M. Dienwel, R. Bennewitz, in: Fundamentals of Friction and Wear on the Nanoscale, Springer (2014), pp. 453 – 461.

  84. C. Park, J. Kim, and H. Ahn, Int. J. Precis. Eng. Manufact., 19(10), 1539 – 1544 (2018).

    Article  Google Scholar 

  85. G. Gonçalves, P. A. A. P. Marques, A. Barros-Timmons, et al., J. Mater. Chem., 20, 9927 – 9934 (2010).

    Article  Google Scholar 

  86. http: // medprofsochi.ru / 225-slepota-prichiny-i- zabolevaniyavyzyvayushchie-poteryu-zreniya.

  87. A. Bendali, L. H. Hess, M. Seifert, et al., Adv. Healthcare Mater., 2, 929 – 933 (2013).

    Article  CAS  Google Scholar 

  88. L. H. Hess, M. Jansen, V. Maybeck, et al., Adv. Mater., 23, 5045 – 5049 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. C. Backes, R. J. Smith, N. McEvoy, et al., Nat. Commun., 5, 4576 – 4606 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. S. R. Shin, Y-C Li, H. L. Jang, et al., Adv. Drug Deliv. Rev., 105, 255 – 274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. S. K. Ameri, P. K. Singh, R. D’Angelo, et al., 38th Annual Int Conf IEEE Engineering in Medicine and Biology Society (EMBC) (Orlando, FL), 4201 – 4203 (2016).

  92. P. Khramtsov,M. Rayev, and V. Timganova, Genes Cells, 15(3), 29 – 38 (2021).

    Google Scholar 

  93. J. Peng, J. Guan, and L-P Jiang, Sci. Adv. Mater., 7, 1945 – 1961 (2015).

    Article  CAS  Google Scholar 

  94. M. S. Mannoor, S. Zhang, and A. J. Link, Proc. Natl. Acad. Sci. USA, 107, 19,207 – 19,212 (2010).

  95. M. S. Mannoor, H. Tao, J. D. Clayton, et al., Nat. Commun., 3, 763 – 780 (2012).

    Article  PubMed  Google Scholar 

  96. D.-W. Jiang, C. Peng, and Y-H Sun, Nucl. Sci. Techn., 26(4), 040301 – 040307 (2015).

    Google Scholar 

  97. T. Yun, G. H. Jeong, S. P. Sasikala, et al., Appl. Mater., 8, ID: 070903 (2020).

  98. H. M. Hegab, A. ElMekawy, and L. Zou, Carbon, 105, 362 – 376 (2016).

    Article  CAS  Google Scholar 

  99. S. Zhang, K. Yang, L. Feng, et al., Carbon, 49(12), 4040 – 4049 (2011).

    Article  CAS  Google Scholar 

  100. D. A. Dikin, S. Stankovich, E. J. Zimney, et al., Nature, 448, 457 – 460 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. L. Peng, M. Yang, Y. Liu, et al., Nat. Commun., 11, Article No. 2645 (2020).

  102. W. Hu, C. Peng, W. Luo, et al., ACS Nano, 4, 4317 – 4323 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. O. Akhavan and E. Ghaderi, ACS Nano, 4(10), 5731 – 5736 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. O. Akhavan and E. Ghaderi, Carbon, 50, 1853 – 1860 (2012).

    Article  CAS  Google Scholar 

  105. https: // dailytechinfo.org / medic / 1507-bumaga-iz-grafenanovyj-antibakterialnyj-perevyazochnyj.

  106. M. Ema, M. Gamo, and K. A. Honda, Regul. Toxicol. Pharmacol., 85, 7 – 24 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Nanomaterials : Ecotoxicity, Safety, and Public Perception, M. Rai and J. K. Biswas (eds), Springer, New York (2019).

  108. T. Lammel, P. Boisseaux, M.-L. Fernández-Cruz, et al., Part. Fibre Toxicol., 10, 27 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. A. Bianko, Angew. Chem. Int. Ed., 52, 4986 – 4997 (2013).

    Article  Google Scholar 

  110. G. Lalwani, M. D’Agati, A. M. Khan, et al., Adv. Drug Delivery Rev., 105, 109 (2016).

    Article  CAS  Google Scholar 

  111. Y. Chongy, C. Ge, Z. Yang, et al., ACS Nano, 9(6), 5713 (2015).

    Article  Google Scholar 

  112. G. Reina, J. M. González-Domínguez, A. Criado, et al., Chem. Soc. Rev., 46, 4400 – 4416 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. U. M. Graham, G. Jacobs, R. A. Yokel, et al., Adv. Exp. Med. Biol., 947, 71 – 100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. S. P. Mukherjee, K. Kostarelos, and B. Fadeel, Adv. Healthcare Mater., 7, 1700815 (2018).

    Article  Google Scholar 

  115. B. Fadeel, C. Bussy, S. Merino, et al., ACS Nano, 12(11), 0582 (2018).

    Article  Google Scholar 

  116. L. Feng, Z. Liu, Nanomedicine (London), 6(2), 317 – 324 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Lisichkin.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 56, No. 1, pp. 3 – 14, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakova, I.I., Lisichkin, G.V. Potential Directions in the Use of Graphene Nanomaterials in Pharmacology and Biomedicine (Review). Pharm Chem J 56, 1–11 (2022). https://doi.org/10.1007/s11094-022-02594-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02594-2

Keywords

Navigation