Skip to main content

Advertisement

Log in

Synthesis of Coumarins Coupled with Benzamides as Potent Antimicrobial Agents

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A series of new coumarin derivatives coupled with benzamides have been synthesized and screened for their antimicrobial properties. Some compounds displayed promising antibacterial activity (MIC ranging within 5 – 150 μg/mL) and moderate antifungal activity as compared to the respective standards. Compounds 6p, 6l and 6m displayed promising antibacterial activity comparable with the standard drug ciprofloxacin, and compound 6m exhibited better antifungal activity in comparison to other synthesized compounds. In silico docking studies of the active compounds were carried out against the gyrase enzyme, and it was concluded that compound 6p exhibited significant hydrogen bonding and hydrophobic interactions which could be the plausible reason for its superior activity as compared to the other synthesized compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. R. C. Moellering, Am. J. Med., 99, 11S – 18S (1995).

    Article  Google Scholar 

  2. P. Singh, A. Anand, and V. Kumar, Eur. J. Med. Chem., 85, 758 – 777 (2014).

    Article  CAS  Google Scholar 

  3. N. P. Peet, Drug Discov. Today, 15, 583 – 586 (2010).

    Article  Google Scholar 

  4. F. Borges, F. Roleira, N. Milhazes, et al., Curr. Med. Chem., 12, 887 – 916 (2005).

    Article  CAS  Google Scholar 

  5. M. A. Al-Haiza and M. S. Mostafa, Molecules, 8, 275 – 286 (2003).

    Article  CAS  Google Scholar 

  6. K. C. Fylaktakidou and D. H. Litina, J. Curr. Pharm. Des., 10, 3813 – 3833 (2004).

    Article  CAS  Google Scholar 

  7. N. Lall, A. A. Hussein, and J. J. M. Meyer, Fitoterapia, 77, 230 – 232 (2006).

    Article  CAS  Google Scholar 

  8. I. Kostova, S. Raleva, P. Genova, and R. Argirova, Bioinorg. Chem. Appl., 1 – 9 (2006).

  9. M. N. Joy, Y. D. Bodke, K. K. A. Khader, and A. M. Sajith, Tetrahedron Lett., 55, 2355 – 2361 (2014).

    Article  CAS  Google Scholar 

  10. H. Kawaguchi, H. Tsukiura, M. Okanishi, et al., J. Antibiotics, Ser. A., 18, 1 – 10 (1965).

  11. T. Nasr, S. Bandock, H. M. Rashed, et al., Eur. J. Med. Chem., 151, 723 – 739 (2018).

    Article  CAS  Google Scholar 

  12. F. Chimenti, D. Secci, A. Bolasco, et al., J. Med. Chem., 52, 1935 – 1942 (2009).

    Article  CAS  Google Scholar 

  13. M. Alipour, M. Khoobi, A. Moradi. et al., Eur. J. Med. Chem., 82, 536 – 544 (2014).

    Article  CAS  Google Scholar 

  14. S. Kumar, K. Mukesh, K. Harjai, and V. Singh, Tetrahedron Lett., 60, 8 – 12 (2019).

    Article  CAS  Google Scholar 

  15. S. Emami and S. Dodashpour, Eur. J. Med. Chem., 102, 611 – 630 (2015).

    Article  CAS  Google Scholar 

  16. C. O. Kappe and D. Dallinger, Mol. Diversity, 13, 71 – 193 (2009).

    Article  CAS  Google Scholar 

  17. A. Hoz, A. D. Ortiz, A. Moreno, Chem. Soc. Rev., 34, 164 – 178 (2005).

    Article  Google Scholar 

  18. M. N. Joy and V. A. Bakulev, AIP Conf. Proc., 2063, 030015 (2019).

    Article  Google Scholar 

  19. M. N. Joy, Y. D. Bodke, K. K. A. Khader, et al., RSC Adv., 4, 19766 – 19777 (2014).

    Article  CAS  Google Scholar 

  20. M. N. Joy, Y. D. Bodke, K. K. A. Khader, et al., J. Fluor Chem., 182, 109 – 120 (2016).

    Article  CAS  Google Scholar 

  21. A. M. Sajith, K. K. A. Khader, N. Joshi, et al., Eur. J. Med. Chem., 89, 21 – 31 (2015).

    Article  CAS  Google Scholar 

  22. V. Jamsheena, C. K. Mahesha, M. N. Joy, and R. S. Lankalapalli, Org. Lett., 19, 6614 – 6617 (2017).

    Article  CAS  Google Scholar 

  23. B. Savitha, E. K. Reddy, C. S. A. Kumar, et al., Tetrahedron Lett., 60, 151332 (2019).

    Article  CAS  Google Scholar 

  24. M. N. Joy, B. Savitha, A. M. Sajith, et al., Chin. Chem. Lett., 27, 31 – 36 (2016).

    Article  CAS  Google Scholar 

  25. J. Sheikh, A. Parvez, H. Juneja, et al., Eur. J. Med. Chem., 46, 1390 – 1399 (2011).

    Article  CAS  Google Scholar 

  26. M. A. Parker, D. M. Kurrasch, and D. E. Nichols, Bioorg. Med. Chem., 16, 4661 – 4669 (2008).

    Article  CAS  Google Scholar 

  27. D. B. Wigley, G. J. Davies, E. J. Dodson, et al., Nature, 351, 624 – 629 (1991).

    Article  CAS  Google Scholar 

  28. J. H. M. Cabral, A. P. Jackson, C. V. Smith, et al., Nature, 388, 903 – 906 (1997).

    Article  Google Scholar 

  29. B. J. Bradbury and M. Pucci, Curr. Opin. Pharmacol., 8, 574 – 581 (2008).

    Article  CAS  Google Scholar 

  30. D. E. Ehmann and S. D. Lahiri, Curr. Opin. Pharmacol., 18, 76 – 83 (2014).

    Article  CAS  Google Scholar 

  31. Y. C. Tse-Dinh, Infect. Disord. Drug Targets, 7, 3 – 9 (2007).

    Article  CAS  Google Scholar 

  32. F. Collin, S. Karkare, and A. Maxwell, Appl. Microbiol. Biotechnol., 92, 479 – 497 (2011).

    Article  CAS  Google Scholar 

  33. V. Giulio and P. Alessandro, Drug Discov. Today, 13, 285 – 294 (2008).

    Article  Google Scholar 

  34. Y. A. Martin, J. Med. Chem., 48, 3164 – 3170 (2005).

    Article  CAS  Google Scholar 

  35. K. G. Arup, N. V. Vellarkad, and J. W. John, J. Comb. Chem., 1, 55 – 68 (1999).

    Article  Google Scholar 

  36. B. A. Arthington-Skaggs, D.W.Warnock, and C. J. Morrison, Antimicrob. Chemother., 44, 2081 – 2085 (2000).

    Article  CAS  Google Scholar 

  37. D. J. M. Lowry,M. J. Jaqua, and S. T. Selepak, Appl. Microbiol., 20, 46 – 53 (1970).

    Article  Google Scholar 

  38. T. Sander, J. Freyss, M. V. Korff, et al., J. Chem. Inf. Model., 49, 232 – 246 (2009).

    Article  CAS  Google Scholar 

  39. O. Trott and A. J. Olson, J. Comput. Chem., 31, 455 – 461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. B. D. Bax, P. F Chan., D. S. Eggleston, et al., Nature., 466, 935 – 940 (2010).

    Article  Google Scholar 

  41. G. M. Morris, D. S. Goodsell, R. S. Halliday, et al., J. Comput. Chem., 19, 1639 – 1662 (1998).

    Article  CAS  Google Scholar 

  42. R. A. Laskowski and M. B. Swindells, J. Chem. Inf. Model., 51, 2778 – 2886 (2011).

    Article  CAS  Google Scholar 

  43. W. L. DeLano, The PyMOL Molecular Graphics System, Delano Scientific: San Carlos (2002). Http://www.citeulike.org/group/340/article/240061 (accessed October 21, 2014).

Download references

Acknowledgements

The authors are thankful to the Department of Industrial Chemistry, Kuvempu University, for rendering the facilities to carry out the experiments. Vasiliy A. Bakulev is thankful for support to the Russian Science Foundation (project No. 18 – 13 – 00161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthipeedika Nibin Joy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joy, M.N., Bakulev, V.A., Bodke, Y.D. et al. Synthesis of Coumarins Coupled with Benzamides as Potent Antimicrobial Agents. Pharm Chem J 54, 604–621 (2020). https://doi.org/10.1007/s11094-020-02245-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02245-4

Keywords

Navigation