Skip to main content
Log in

QSAR studies of antibacterial ricinoleic acid derivatives

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Abstract

A series of ricinoleic acid derivatives has been synthesized and tested for antibacterial activity with respect to four standard strains. Dibromoricinoleic acid (DBRA) showed high activity comparable with that of the reference drug ciprofloxacin. QSARs between various physicochemical indices and the antibacterial activity of a training set including 12 compounds were analyzed. The topological parameter, the valence second-order molecular connectivity index (2χv), and the electronic parameter of total energy (TE) proved to be important for the antibacterial activity of compounds studied. The proposed QSAR models were validated using the leave-one-out procedure. The validity of these models was confirmed by predicting the activity of a set of three compounds (not present in the training set).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Narasimhan, U. R. Kothawade, D. S. Pharande, et al., Indian J. Chem., 42B, 2828–2834 (2003).

    CAS  Google Scholar 

  2. B. Narasimhan, D. Belsare, D. Pharande, et al., Eur. J. Med. Chem., 39, 827–834 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. B. Narasimhan and A. S. Dhake, J. Med. Food, 9(3), 395–399 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. S. Budavari, in: The Merck Index (12th Ed.), Merck Research Lab., White House Station, NJ (1996).

    Google Scholar 

  5. H. V. Ammon, P. J. Thomas, and S. F. Philips, J. Clin. Invest., 53, 374–379 (1974).

    Article  PubMed  CAS  Google Scholar 

  6. E. Beubler and H. Jaun, J. Pharm. Pharmacol., 31, 681–685 (1979).

    PubMed  CAS  Google Scholar 

  7. V. Celme, S. Evangelista, R. Cirillo, et al., Mediat. Inflamm., 9(5), 223–228 (2000).

    Article  Google Scholar 

  8. S. J. Lin, S. L. Lee, and C. C. Chon, J. Ferm. Bioeng., 82(1), 42–45 (1996).

    Article  CAS  Google Scholar 

  9. R. Ikan, in: Natural Products: A Lab Guide, Academic Press, London (1969), pp. 28–30.

    Google Scholar 

  10. J. G. Cappucino and N. Sherman, in: Microbiology: A Laboratory Manual, Addison Wesley, San-Francisco, CA (1999), pp. 263–265.

    Google Scholar 

  11. Pharmacopoeia of India, Ministry of Health Department, Government of India, New Delhi (1996), Vol. II, p. A–88.

  12. H. Kubinyi, QSAR-Hansch analysis and Related Approaches, VCH Publishers, New York (1993), Vol. 1, pp. 1–117.

    Google Scholar 

  13. C. Hansch, Comprehensive Medicinal Chemistry, Pergamon Press, Oxford (1990), Vol. 4, pp. 9–528.

    Google Scholar 

  14. TSAR 3D (Version 3.3), Oxford Molecular Limited, 2000.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 41, No. 3, pp. 16–21, March, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narasimhan, B., Mourya, V.K. & Dhake, A.S. QSAR studies of antibacterial ricinoleic acid derivatives. Pharm Chem J 41, 133–139 (2007). https://doi.org/10.1007/s11094-007-0030-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-007-0030-5

Keywords

Navigation