Skip to main content
Log in

Production of SiC Nanoparticles in Carbon Network by Pulsed Electrical Discharges in Liquid Hexamethyldisilazane with Gaseous Bubbles

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Discharges in liquid can efficiently produce nanoparticles via electrode erosion and (or) liquid decomposition. Although in-liquid spark discharges promote the erosion of electrodes, the injection of bubbles may enhance plasma-liquid interactions. In this study, we investigate the materials produced by sustaining pulsed discharges in liquid hexamethyldisilazane with injected Ar, He, or N2 gas bubbles. The electrical characteristics of the discharges are analyzed, and variations are detected between the materials produced using Ar or He gases and using N2. The behavior of the liquid medium after synthesis also exhibits differences, depending on the nature of the gaseous bubbles. For instance, the particles produced with Ar and He are rapidly (within hours) sedimented in the liquid medium, but those produced with N2 remain in suspension for several weeks. FTIR, Raman, TEM, and UV–Vis analyses show that the synthesized materials consist of SiC nanoparticles (~ 10 nm diameter) embedded in a hydrogenated carbonaceous structure with short-range order (~ 2 to 4 nm). O and N are detected in the structure, which indicates that the composition of the particles’ surface is complex. When the particles are heated at 600° C in air for 4 h, crystalline structures with a higher percentage of O and lower percentages of C and N are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu Q, Miao WS, Gao HJ, Hui D (2020) Mechanical properties of nanomaterials: a review. Nanotechnol Rev 9(1):259–273

    Article  CAS  Google Scholar 

  2. Ali A, Andriyana A (2020) Properties of multifunctional composite materials based on nanomaterials: a review. RSC Adv 10(28):16390–16403

    Article  CAS  Google Scholar 

  3. Zhou X, Wang Y, Gong C, Liu B, Wei G (2020) Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: a comprehensive review. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126189

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ponnamma D, Yin Y, Salim N, Parameswaranpillai J, Thomas S, Hameed N (2021) Recent progress and multifunctional applications of 3D printed graphene nanocomposites. Compos Part B Eng 204:108493

    Article  CAS  Google Scholar 

  5. Wu H, Fahy WP, Kim S, Kim H, Zhao N, Pilato L et al (2020) Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog Mater Sci 111:10063

    Article  Google Scholar 

  6. Wahid F, Zhao XJ, Jia SR, Bai H, Zhong C (2020) Nanocomposite hydrogels as multifunctional systems for biomedical applications: current state and perspectives. Compos Part B Eng 200:108208

    Article  CAS  Google Scholar 

  7. Sun X, Huang C, Wang L, Liang L, Cheng Y, Fei W, Li Y (2021) Recent progress in graphene/polymer nanocomposites. Adv Mater 33(6):2001105

    Article  CAS  Google Scholar 

  8. Arshad A, Jabbal M, Yan Y (2020) Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics. Energy Convers Manag 205:112444

    Article  CAS  Google Scholar 

  9. Melinte V, Stroea L, Chibac-Scutaru AL (2019) Polymer nanocomposites for photocatalytic applications. Catalysts 9(12):986

    Article  CAS  Google Scholar 

  10. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu X, Cai J, Zhang X, Li WD, Ge H, Hu Y (2018) Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv Drug Deliv Rev 132:169–187

    Article  CAS  Google Scholar 

  12. Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2010) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater 22(1):155–160

    Article  CAS  Google Scholar 

  13. Lin HF, Liao SC, Hung SW (2005) The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J Photochem Photobiol A Chem 174(1):82–87

    Article  CAS  Google Scholar 

  14. Coleman D, Lopez T, Yasar-Inceoglu O, Mangolini L (2015) Hollow silicon carbide nanoparticles from a non-thermal plasma process. J Appl Phys 117(19):193301

    Article  Google Scholar 

  15. Rezaei F, Vanraes P, Nikiforov A, Morent R, De Geyter N (2019) Applications of plasma-liquid systems: a review. Materials 12(17):2751

    Article  CAS  Google Scholar 

  16. Belmonte T, Hamdan A, Kosior F, Noël C, Henrion G (2014) Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis. J Phys D Appl Phys 47(22):224016

    Article  Google Scholar 

  17. Hamdan A, Kabbara H, Noel C, Ghanbaja J, Redjaïmia A, Belmonte T (2018) Synthesis of two-dimensional lead sheets by spark discharge in liquid nitrogen. Particuology 40:152–159

    Article  CAS  Google Scholar 

  18. Mariotti D, Patel J, Švrček V, Maguire P (2012) Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Process Polym 9(11–12):1074–1085

    Article  CAS  Google Scholar 

  19. Vanraes P, Bogaerts A (2018) Plasma physics of liquids: a focused review. Appl Phys Rev 5(3):031103

    Article  Google Scholar 

  20. Merciris T, Valensi F, Hamdan A (2021) Synthesis of nickel and cobalt oxide nanoparticles by pulsed underwater spark discharges. J Appl Phys 129(6):063303

    Article  CAS  Google Scholar 

  21. Hamdan A, Agati M, Boninelli S (2021) Selective synthesis of 2d mesoporous CuO agglomerates by pulsed spark discharge in water. Plasma Chem Plasma Process 41(1):433–445

    Article  CAS  Google Scholar 

  22. Richmonds C, Sankaran RM (2008) Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl Phys Lett 93(13):131501

    Article  Google Scholar 

  23. Velusamy T, Liguori A, Macias-Montero M, Padmanaban DB, Carolan D, Gherardi M et al (2017) Ultra-small CuO nanoparticles with tailored energy-band diagram synthesized by a hybrid plasma-liquid process. Plasma Process Polym 14(7):1600224

    Article  Google Scholar 

  24. Kabbara H, Noel C, Ghanbaja J, Hussein K, Mariotti D, Švrček V, Belmonte T (2015) Synthesis of nanocrystals by discharges in liquid nitrogen from Si–Sn sintered electrode. Sci Rep 5(1):1–8

    Article  Google Scholar 

  25. Kabbara H, Ghanbaja J, Noël C, Belmonte T (2017) Synthesis of Cu@ ZnO core–shell nanoparticles by spark discharges in liquid nitrogen. Nano-Struct Nano Objects 10:22–29

    Article  CAS  Google Scholar 

  26. Trad M, Nominé A, Noël C, Ghanbaja J, Tabbal M, Belmonte T (2020) Evidence of alloy formation in CoNi nanoparticles synthesized by nanosecond-pulsed discharges in liquid nitrogen. Plasma Process Polym 17(5):1900255

    Article  CAS  Google Scholar 

  27. Wang Y, Dong S, Li X, Hong C, Zhang X (2021) Synthesis, properties, and multifarious applications of SiC nanoparticles: a review. Ceram Int 48(7):8882–8913

    Article  Google Scholar 

  28. Hamdan A, Abiad DE, Cha MS (2021) Synthesis of silicon and silicon carbide nanoparticles by pulsed electrical discharges in dielectric liquids. Plasma Chem Plasma Process 41(6):1647–1660

    Article  CAS  Google Scholar 

  29. PubChem, open chemistry database, National Institutes of Health https://pubchem.ncbi.nlm.nih.gov/compound/Tetramethylsilane

  30. Hamdan A, Cha MS (2015) Ignition modes of nanosecond discharge with bubbles in distilled water. J Phys D Appl Phys 48(40):405206

    Article  Google Scholar 

  31. Holzer F, Locke BR (2008) Influence of high voltage needle electrode material on hydrogen peroxide formation and electrode erosion in a hybrid gas–liquid series electrical discharge reactor. Plasma Chem Plasma Process 28(1):1–13

    Article  CAS  Google Scholar 

  32. Hamdan A, Abdul Halim R, Anjum D, Cha MS (2017) Synthesis of SiOC: H nanoparticles by electrical discharge in hexamethyldisilazane and water. Plasma Process Polym 14(12):1700089

    Article  Google Scholar 

  33. Tuinstra F, Koenig JL (1970) Characterization of graphite fiber surfaces with Raman spectroscopy. J Compos Mater 4(4):492–499

    Article  CAS  Google Scholar 

  34. Hamdan A, Noel C, Ghanbaja J, Migot-Choux S, Belmonte T (2013) Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane. Mater Chem Phys 142(1):199–206

    Article  CAS  Google Scholar 

  35. Lin YR, Ho CY, Chuang WT, Ku CS, Kai JJ (2014) Swelling of ion-irradiated 3C–SiC characterized by synchrotron radiation based XRD and TEM. J Nucl Mater 455(1–3):292–296

    Article  CAS  Google Scholar 

  36. Dravecz G, Jánosi TZ, Beke D, Major DÁ, Károlyházy G, Erostyák J et al (2018) Identification of the binding site between bovine serum albumin and ultrasmall SiC fluorescent biomarkers. Phys Chem Chem Phys 20(19):13419–13429

    Article  CAS  Google Scholar 

  37. Scharff P, Risch K, Carta-Abelmann L, Dmytruk IM, Bilyi MM, Golub OA et al (2004) Structure of C60 fullerene in water: spectroscopic data. Carbon 42(5–6):1203–1206

    Article  CAS  Google Scholar 

  38. Rübel H, Schröder B, Fuhs W, Krauskopf J, Rupp T, Bethge K (1987) IR spectroscopy and structure of RF magnetron sputtered a-SiC:H Films. Physica Status Solidi (b) 139(1):131–143. https://doi.org/10.1002/pssb.2221390111

    Article  Google Scholar 

  39. Zakirov AS, Navamathavan R, Jang YJ, Jung AS, Lee K, Choi CK (2007) Comparative study on the structural and electrical properties of low-k SiOC (–H) films deposited by using plasma enhanced chemical vapor deposition. J Korean Phys Soc 50(6):1809

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication is part of a project supported by King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR), under Award No. OSR-2020-CPF-1975.37. The authors thank the Fonds de Recherche du Québec–Nature et Technologie (FRQ-NT) and the Canada Foundation for Innovation (CFI) for funding the research infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Hamdan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdan, A., Cha, M.S. Production of SiC Nanoparticles in Carbon Network by Pulsed Electrical Discharges in Liquid Hexamethyldisilazane with Gaseous Bubbles. Plasma Chem Plasma Process 42, 605–618 (2022). https://doi.org/10.1007/s11090-022-10243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10243-5

Keywords

Navigation