Skip to main content
Log in

Plasma-Chemical Synthesis of Lead Sulphide Thin Films for Near-IR Photodetectors

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Lead sulfide (PbS) thin films of different morphology were synthesized via direct interaction of lead and sulfur vapors. Low temperature nonequilibrium RF (40.68 MHz) plasma discharge at low pressure ((3–5) × 10–3 Torr) was used for the initiation of chemical interaction between precursors in the gas phase. The in-situ Optical Emission Spectroscopy (OES) was utilized to determine the exited reactive species existing in plasma discharge and possible mechanism of plasma-chemical reactions resulting in the formation of the solid phase. The chemical composition, structure and morphology of the surface of the as-deposited materials in dependence of parameters of the plasma process such as stoichiometry of the precursors in the gas phase, power of the plasma discharge and substrate temperature were characterized by SEM, XRD and AFM analytical techniques. The optical properties and electrophysical parameters of the samples were studied as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lunt RR, Osedach TP, Brown PR, Rowehl JA, Bulovic V (2011) Practical roadmap and limits to nanostructured photovoltaics. Adv Mater 23:5712–5727

    Article  CAS  Google Scholar 

  2. Yeon DH, Lee SM, Jo YH, Moon J, Cho YS (2014) Origin of the enhanced photovoltaic characteristics of PbS thin film solar cells processed at near room temperature. J Mater Chem A 2:20112–20117

    Article  CAS  Google Scholar 

  3. Tian J, Cao G (2013) Semiconductor quantum dot-sensitized solar cells. Nano Rev 4:22578

    Article  Google Scholar 

  4. Jean J, Chang S, Brown PR, Cheng JJ, Rekemeyer PH, Bawendi MG, Gradecak S, Bulovic V (2013) ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv Mater 25:2790–2796

    Article  CAS  Google Scholar 

  5. Mochalov L, Logunov A, Sazanova T, Vorotyntsev V (2019) New generation of materials for the near-mid ir sensors based on lead chalcogenides. In: Conference: 21st international conference on transparent optical networks (ICTON) 8839997

  6. Lee A (1998) Miniature PbS sensor for NIR spectroscopy. SPIE 3857:92–97

    Google Scholar 

  7. Johnson TH (1984) Lead salt detectors and arrays PbS and PbSe. J Proc SPIE 443:60–94

    Article  Google Scholar 

  8. Zemel JN, Jensen JD, Schoolar RB (1965) Electrical and optical properties of epitaxial films of PbS, PbSe and PbTe. J Phys Rev 140:330–342

    Article  CAS  Google Scholar 

  9. Pentia E, Pintilie L, Matei I, Botila T, Ozbay E (2001) Chemically prepared nanocrystalline PbS thin films. J Optoelectron Adv Mater 3(2):525–530

    CAS  Google Scholar 

  10. Basu PK, Chaudhuri TK, Nandi KC, Saraswat RS, Acharya HN (1990) Preparation and characterization of chemically deposited lead sulphide thin films. J Mater Sci 25:4014–4017

    Article  CAS  Google Scholar 

  11. Nair PK, Garcia VM, Hernandez AB, Nair MTS (1991) Photoaccelerated chemical deposition of PbS thin films: novel applications in decorative coatings and imaging techniques. J Phys D Appl Phys 24:1466–1472

    Article  CAS  Google Scholar 

  12. Fainer NI, Kosinova ML, Rumyantsev YM, Salman EG, Kuznetsov FA (1996) Growth of PbS and CdS thin films by low-pressure chemical vapour deposition using dithiocarbamates. J Thin Solid Films 280:16–19

    Article  CAS  Google Scholar 

  13. Vorotyntsev VM, Malyshev VM, Mochalov LA, Petukhov AN, Salnikova ME (2018) The capture of nanosized particles by the directional crystallization of sulfur. Sep Purif Technol 199:214–221

    Article  CAS  Google Scholar 

  14. Mochalov L, Logunov A, Vorotyntsev A, Vorotyntsev V, Mashin A (2018) Purification of tellurium through thermal decomposition of plasma prepared tellurium hydride. Sep Purif Technol 204:276–280

    Article  CAS  Google Scholar 

  15. Trubyanov MM, Shablykin DN, Mokhnachev NA, Sergeeva MS, Vorotyntsev AV, Petukhov AN, Vorotyntsev VM (2020) A hybrid batch distillation/membrane process for high purification part 1: energy efficiency and separation performance study for light impurities removal. Sep Purif Technol 241:11667815

    Article  Google Scholar 

  16. Mochalov L, Logunov A, Kitnis A, Prokhorov I, Kovalev A, Yunin P, Gogova D, Vorotyntsev V (2020) Sep Purif Technol 238:116446

    Article  CAS  Google Scholar 

  17. Erdevdy NM, Shpenik OB, Markush PP (2015) Electron-impact excitation of gas-phase sulfur. J Appl Spectrosc 82(1):19–24

    Article  CAS  Google Scholar 

  18. Mochalov LA, Kornev RA, Churbanov MF, Sennikov PG (2014) Investigation of the process of hydrogen reduction of 32S from 32SF6 via RF capacitive plasma discharge. J Fluorine Chem 160:48–51

    Article  CAS  Google Scholar 

  19. Brotton SJ, McConkey JW (2011) Dissociative excitation and fragmentation of S8 by electron impact. J Chem Phys 134(20):204301

    Article  CAS  Google Scholar 

  20. Mochalov L et al (2020) Plasma-prepared arsenic telluride films: Relationship between physico-chemical properties on the parameters of the deposition process. Mater Res Exp 6(12):126436

    Article  Google Scholar 

  21. Mochalov L, Logunov A, Markin A, Kitnis A, Vorotyntsev V (2020) Characteristics of the Te-based chalcogenide films dependently on the parameters of the PECVD process. Opt Quant Electron 52(4):197

    Article  CAS  Google Scholar 

  22. Eddy CE, Turner AH (1927) The L emission spectra of lead and bismuth. Proc R Soc A Math Phys Eng Sci 114(768):605–610

    CAS  Google Scholar 

  23. Wood DR, Ross CB, Scholl PS, Hoke M (1974) J Opt Soc Am 64:1159

    Article  CAS  Google Scholar 

  24. Thurbide KB, Aue WA (2002) Chemiluminescent emission spectra of lead, chromium, ruthenium, iron, manganese, rhenium, osmium and tungsten in the reactive flow detector. Spectrochim Acta Part B 57:843–852

    Article  Google Scholar 

  25. Mochalov L, Dorosz D, Kochanowicz M, Logunov A, Letnianchik A, Starostin N, Zelentsov S, Boreman G, Vorotyntsev V (2020) Spectrochim Acta Part A Mol Biomol Spectrosc 241:118629

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JrT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ,. Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Orti JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko AP (2016) Gaussian 03, Revision A.1.

  27. Wood D, Andrew KL (1968) J Opt Soc Am 58:818

    Article  CAS  Google Scholar 

  28. Mochalov L et al (2019) Enhancement of IR transparency of arsenic sulfide materials via plasma-chemical conversion of the initial arsenic monosulfide in low-temperature RF plasma. J Phys D Appl Phys 52(1):015203

    Article  Google Scholar 

  29. Bai R, Chaudhary S, Pandya DK (2018) Temperature dependent charge transport mechanisms in highly crystalline p-PbS cubic nanocrystals grown by chemical bath deposition. Mater Sci Semicond Process 75:301–310. https://doi.org/10.1016/j.mssp.2017.12.003

    Article  CAS  Google Scholar 

  30. Mukhortov VM, Yuzyuk YI (2008) Heterostructures based on nanoscale ferroelectric films: production, properties and applications. Southern Scientific Center of RAS, Rostov-on-Don

    Google Scholar 

  31. Brown FC (1967) Physics of solids. Benjamin, New York

    Book  Google Scholar 

  32. Walsh A (2010) Defect processes in a PbS metal organic framework: a quantum-confined hybrid semiconductor. J Phys Chem Lett 1:1284–1287. https://doi.org/10.1021/jz100312y

    Article  CAS  Google Scholar 

  33. Kohn SE, Yu PY, Petroff Y, Shen YR, Tsang Y, Cohen ML (1973) Electronic Band Structure and Optical Properties of PbTe, PbSe, and PbS. Phys. Rev. B 8:1477 Phys. Rev. B 10, 3720 (1974).

  34. Mochalov L et al (2020) Plasma Chem Plasma Process 40(1):407–421

    Article  CAS  Google Scholar 

  35. Vorotyntsev AV, Petukhov AN, Makarov DA, Sazanova TS, Razov EN, Nyuchev AV, Mochalov LA, Markov AN, Kulikov AD, Vorotyntsev VM (2018) Appl Catal B 239:102–113

    Article  CAS  Google Scholar 

  36. Bai R, Kumar D, Chaudhary S, Pandya DK (2017) Highly crystalline p-PbS thin films with tunable optical and hole transport parameters by chemical bath deposition. Acta Mater 113:11–21. https://doi.org/10.1016/j.actamat.2017.03.062

    Article  CAS  Google Scholar 

  37. Baranov AV, Bogdanov KV, Ushakova EV, Cherevkov SA, Fedorov AV (2010) Tscharntke S 109(2):301–305

    Google Scholar 

Download references

Acknowledgements

The reported study was supported by the Russian Science Foundation, Grant No 19-79-10124 «Development of scientific fundamentals of the plasma-chemical synthesis of a new generation of the functional materials for the mid-IR range». The X-ray microanalysis and scanning electron microscopy were carried out on the equipment of the Collective Usage Centre "New Materials and Resource-saving Technologies" (Chemistry Research Institute of Lobachevsky State University of Nizhny Novgorod).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Mochalov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochalov, L., Logunov, A., Prokhorov, I. et al. Plasma-Chemical Synthesis of Lead Sulphide Thin Films for Near-IR Photodetectors. Plasma Chem Plasma Process 41, 493–506 (2021). https://doi.org/10.1007/s11090-020-10123-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10123-w

Keywords

Navigation