Skip to main content

Advertisement

Log in

Interaction of CH4 with Electronically Excited O2: Ab Initio Potential Energy Surfaces and Reaction Kinetics

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Multireference quantum chemical research with the aid of complete active space self-consistent field approach was performed to study the elementary reactions of \({{\text {CH}}_4}\) with \({\text {O}}_2\) in \({a^1\varDelta _g}\), \({b^1\varSigma _g^+}\), \({c^1\varSigma _u^-}\), and \({A^{\prime 3} \varDelta _u}\) electronically excited states highly relevant for plasma-assisted combustion and for plasma-chemical fuel reforming. The thermodynamically and kinetically favorable reaction pathways and likely intersystem crossings for the first step of the methane oxidation have been found out. The key energy values were refined based upon the extended multiconfiguration quasi-degenerate 2nd-order perturbation theory. It has been exhibited that the reaction of \({{\text {O}}_2(a^1\varDelta _g)}\) and \({{\text {O}}_2(A^{\prime 3} \varDelta _u)}\) with \({{\text {CH}}_4}\) proceeds through the abstraction of hydrogen with fairly low energy barriers that led to the formation of the \(\hbox {HO}_2\) molecule in \({^2A^{\prime \prime }}\) and \({^2A^{\prime }}\) electronic states, respectively. These results were compared with the findings of previous theoretical investigations. The oxygen molecule in singlet sigma b state was evinced to be nonreactive with regard to the methane. However, for \({c^1\varSigma _u^-}\) state, the reactive interaction was nevertheless found possible due to the significant probability of the nonadiabatic transitions. Appropriate thermal rate constants for revealed channels have been calculated employing variational transition-state theory and capture approximation. Corresponding three-parameter Arrhenius expressions for the broad temperature range (\(T=300\)–3000 K) were reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adamovich IV, Lempert WR (2015) Challenges in understanding and development of predictive models of plasma assisted combustion. Plasma Phys Control Fusion 57:014001. https://doi.org/10.1088/0741-3335/57/1/014001

    Article  CAS  Google Scholar 

  2. Andrienko GA. Chemcraft version 1.8. http://www.chemcraftprog.com

  3. Aranda C, Richaud A, Mendez F, Dominguez A (2018) Theoretical rate constant of methane oxidation from the conventional transition-state theory. J Mol Model 24:294

    PubMed  Google Scholar 

  4. Bao JL, Truhlar DG (2017) Variational transition state theory: theoretical framework and recent developments. Chem Soc Rev 46:7548–7596. https://doi.org/10.1039/c7cs00602k

    Article  CAS  PubMed  Google Scholar 

  5. Barone V (2005) Anharmonic vibrational properties by a fully automated second-order perturbative approach. J Chem Phys 122:014108

    Google Scholar 

  6. Baulch DL, Bowman CT, Cobos CJ, Cox RA, Just T, Kerr JA, Pilling MJ, Stocker D, Troe J, Tsang W, Walker RW, Warnatz J (2005) Evaluated kinetic data for combustion modeling. J Phys Chem Ref Data 34(3):757–1397. https://doi.org/10.1063/1.1748524

    Article  CAS  Google Scholar 

  7. Becker KH, Groth W, Schurath U (1971) The quenching of metastable \({\text{O}}_2(^1\Delta _g)\) and \({\text{O}}_2(^1\Sigma _g^+)\) molecules. Chem Phys Lett 8:259–262

    CAS  Google Scholar 

  8. Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C, Vacher JR (2008) Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge. Plasma Chem Plasma Process 28:429–466

    CAS  Google Scholar 

  9. Bodesheim M, Schmidt R (1997) Chemical reactivity of sigma singlet oxygen \({\text{O}}_2(b^1\Sigma _g^+)\). J Phys Chem A 101:5672–5677

    CAS  Google Scholar 

  10. Bross DH, Jasper AW, Ruscic B, Wagner AF (2019) Toward accurate high temperature anharmonic partition functions. Proc Combust Inst 37:315–322

    CAS  Google Scholar 

  11. Bruggeman PJ, Iza F, Brandenburg R (2017) Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci Technol 26:123,002

    Google Scholar 

  12. Carr RW (2007) Elements of chemical kinetics. In: Green NJB (ed) Comprehensive chemical kinetics, vol 42. Elsevier, Amsterdam, pp 43–99

    Google Scholar 

  13. Castela M, Fiorina B, Coussement A, Gicquel O, Darabiha N, Laux CO (2016) Modelling the impact of non-equilibrium discharges on reactive mixtures for simulations of plasma-assisted ignition in turbulent flows. Combust Flame 166:133–147. https://doi.org/10.1016/j.combustflame.2016.01.009

    Article  CAS  Google Scholar 

  14. Chakraborty A, Truhlar DG, Bowman JM, Carter S (2004) Calculation of converged rovibrational energies and partition function for methane using vibrational-rotational configuration interaction. J Chem Phys 121:2071

    CAS  PubMed  Google Scholar 

  15. Chen Q, Yang X, Sun J, Zhang X, Mao X, Ju Y, Koel BE (2017) Pyrolysis and oxidation of methane in a RF plasma reactor. Plasma Chem Plasma Process 37:1551–1571

    Google Scholar 

  16. Chukalovsky AA, Klopovsky KS, Palov AP, Mankelevich YA, Rakhimova TV (2016) Reaction of hydrogen atoms with singlet delta oxygen (\({\text{O}}_2(a^1\Delta _g)\)). Is everything completely clear? J Phys D Appl Phys 49:485202

    Google Scholar 

  17. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126:084108

    PubMed  Google Scholar 

  18. Deng J, He L, Liu X, Chen Y (2018) Numerical simulation of plasma-assisted combustion of methane–air mixtures in combustion chamber. Plasma Sci Technol 20:125502. https://doi.org/10.1088/2058-6272/aacdef

    Article  CAS  Google Scholar 

  19. Dunlea EJ, Talukdar RK, Ravishankara AR (2005) Kinetic studies of the reactions of \({\text{O}}_2(b^1\Sigma _g^+)\) with several atmospheric molecules. J Phys Chem A 109:3912–3920

    CAS  PubMed  Google Scholar 

  20. Eckert Z, Tsolas N, Togai K, Chernukho A, Yetter RA, Adamovich IV (2018) Kinetics of plasma-assisted oxidation of highly diluted hydrocarbon mixtures excited by a repetitive nanosecond pulse discharge. J Phys D Appl Phys 51:374002

    Google Scholar 

  21. Fan X, McLaughlin JB, Melman A, Mededovic-Thagard S (2017) Quantum chemical approach for determining degradation pathways of phenol by electrical discharge plasmas. Plasma Chem Plasma Process 37:5–28

    CAS  Google Scholar 

  22. Fedorov DG (1999) Theoretical study of spin-orbit coupling in molecules. Retrospective theses and dissertations. Paper 12662, Iowa State University, Ames, Iowa

  23. Fedorov DG, Koseki S, Schmidt MW, Gordon MS (2003) Spin–orbit coupling in molecules: chemistry beyond the adiabatic approximation. Int Rev Phys Chem 22(3):551–592

    CAS  Google Scholar 

  24. Fernandez-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG (2006) Modeling the kinetics of bimolecular reactions. Chem Rev 106:4518–4584

    CAS  PubMed  Google Scholar 

  25. Filimonova EA, Bocharov AN, Dobrovolskaya AS, Bityurin VA (2019) Influence of nanoseconds pulsed discharges on the composition of intermediate and final combustion products in the HCCI engine. Plasma Chem Plasma Process 39:683–694. https://doi.org/10.1007/s11090-019-09964-x

    Article  CAS  Google Scholar 

  26. Fracchia F, Cimiraglia R, Angeli C (2015) Assessment of multireference perturbation methods for chemical reaction barrier heights. J Phys Chem A 119:5490–5495

    CAS  PubMed  Google Scholar 

  27. Freidzon A, Tsybizova A (2017) CASSCF and Firefly: a tutorial. https://www.researchgate.net/publication/317106028. Accessed Jan 2019

  28. Gimenez-Lopez J, Millera A, Bilbao R, Alzueta MU (2015) Experimental and kinetic modeling study of the oxy-fuel oxidation of natural gas, \({\text{CH}}_4\) and \(\text{ C }_2{\text{H}}_6\). Fuel 160:404–412

    CAS  Google Scholar 

  29. Gonzalez C, Schlegel BH (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2162

    CAS  Google Scholar 

  30. Granovsky AA. Firefly V. 8.2.0. http://classic.chem.msu.su/gran/firefly/index.html. Accessed Jan 2019

  31. Granovsky AA (2011) Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. J Chem Phys 134:214113

    PubMed  Google Scholar 

  32. Harding LB, Klippenstein SJ, Jasper AW (2007) Ab initio methods for reactive potential surfaces. Phys Chem Chem Phys 9:4055–4070

    CAS  PubMed  Google Scholar 

  33. Harvey JN (2007) Understanding the kinetics of spin-forbidden chemical reactions. Phys Chem Chem Phys 9:331–343

    CAS  PubMed  Google Scholar 

  34. Hashemi H, Christensen JM, Gersen S, Levinsky H, Klippenstein SJ, Glarborg P (2016) High-pressure oxidation of methane. Combust Flame 172:349–364

    CAS  Google Scholar 

  35. Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calculations on water. J Chem Phys 106:9639–9646

    CAS  Google Scholar 

  36. Herron JT, Green DS (2001) Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions. Plasma Chem Plasma Process 21(3):459–481

    CAS  Google Scholar 

  37. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, constants of diatomic molecules, vol 4. Van Nostrand Reinhold, New York

    Google Scholar 

  38. Jacox ME (2003) Vibrational and electronic energy levels of polyatomic transient molecules. Supplement B. J Phys Chem Ref Data 32:1–437

    CAS  Google Scholar 

  39. Jasper AW, Klippenstein SJ, Harding LB (2009) Theoretical rate coefficients for the reaction of methyl radical with hydroperoxyl radical and for methylhydroperoxide decomposition. Proc Combust Inst 32:279–286. https://doi.org/10.1016/j.proci.2008.05.036

    Article  CAS  Google Scholar 

  40. Jasper AW, Miller JA (2011) Theoretical unimolecular kinetics for \({\text{CH}}_4\)+M=\({\text{CH}}_3\)+H + M in eight baths, M = He, Ne, Ar, Kr, \({\text{H}}_2\), \({\text{N}}_2\), CO, and \({\text{CH}}_4\). J Phys Chem A 115:6438–6455

    CAS  PubMed  Google Scholar 

  41. Ju Y, Lefkowitz JK, Reuter CB, Won SH, Yang X, Yang S, Sun W, Jiang Z, Chen Q (2016) Plasma assisted low temperature combustion. Plasma Chem Plasma Process 36:85–105

    CAS  Google Scholar 

  42. Ju Y, Sun W (2015) Plasma assisted combustion: dynamics and chemistry. Prog Energy Combust Sci 48:21–83

    Google Scholar 

  43. Kaledin AL, Heaven MC, Morokuma K (2001) Theoretical prediction of the rate constant for I + \({\text{O}}_2(a^1\Delta _g)\) electronic energy transfer: a surface-hopping trajectory study. J Chem Phys 114(1):215–224

    CAS  Google Scholar 

  44. Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806

    CAS  Google Scholar 

  45. Kendrick B, Pack RT (1995) Potential energy surfaces for the low-lying \(^2\)A″ and \(^2\)A′ states of \({\text{HO}}_2\): use of the diatomics in molecules model to fit ab initio data. J Chem Phys 102:1994–2012. https://doi.org/10.1063/1.468765

    Article  CAS  Google Scholar 

  46. Khvatov NA, Zagidullin MV, Tolstov GI, Medvedkov IA, Mebel AM, Heaven MC, Azyazov VN (2019) Product channels of the reactions of \({\text{O}}_2(b^1\Sigma _g^+)\). Chem Phys 521:85–91. https://doi.org/10.1016/j.chemphys.2019.01.025

    Article  CAS  Google Scholar 

  47. Konnov AA (2015) On the role of excited species in hydrogen combustion. Combust Flame 162:3755–3772. https://doi.org/10.1016/j.combustflame.2015.07.014

    Article  CAS  Google Scholar 

  48. Koseki S, Schmidt MW, Gordon MS (1998) Effective nuclear charges for the first- through third-row transition metal elements in spin–orbit calculations. J Phys Chem A 102:10430–10435

    CAS  Google Scholar 

  49. Landau LD, Lifshitz EM (1977) Quantum mechanics: non-relativistic theory, vol 3. Pergamon Press, New York

    Google Scholar 

  50. Langhoff SR, Jaffe RL (1979) Theoretical study of the four lowest doublet electronic states of the hydroperoxyl radical: application to photodissociation. J Chem Phys 71:1475–1486

    CAS  Google Scholar 

  51. Lebedev AV, Deminsky MA, Zaitzevsky AV, Potapkin BV (2013) Effect of \({\text{O}}_2(a^1\Delta _g)\) on the low-temperature mechanism of \({\text{CH}}_4\) oxidation. Combust Flame 160:530–538. https://doi.org/10.1016/j.combustflame.2012.11.020

    Article  CAS  Google Scholar 

  52. Lee DH, Kim KT, Song YH, Kang WS, Jo S (2013) Mapping plasma chemistry in hydrocarbon fuel processing processes. Plasma Chem Plasma Process 33:249–269

    CAS  Google Scholar 

  53. Lehman JH, Lester MI, Klos J, Alexander MH, Dagdigian PJ, Herraez-Aguilar D, Aoiz FJ, Brouard M, Chadwick H, Perkins T, Seamons SA (2013) Electronic quenching of OH \(A^2\Sigma ^{+}\) induced by collisions with Kr atoms. J Phys Chem A 117:13481–13490

    CAS  PubMed  Google Scholar 

  54. Loukhovitski BI, Sharipov AS, Starik AM (2017) Quantum chemical study of small Al\(_n\)B\(_m\) clusters: structure and physical properties. Chem Phys 493:61–76

    CAS  Google Scholar 

  55. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K (2016) Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep 630:1–84

    CAS  Google Scholar 

  56. Mai TVT, v Duong M, Le XT, Huynh LK, Ratkiewicz A (2014) Direct ab initio dynamics calculations of thermal rate constants for the \({\text{CH}}_4\) + \({\text{O}}_2\) = \({\text{CH}}_3\) + \({\text{HO}}_2\) reaction. Struct Chem 25:1495–1503

    CAS  Google Scholar 

  57. Mao X, Rousso A, Chen Q, Ju Y (2019) Numerical modeling of ignition enhancement of \({\text{CH}}_4\)/\({\text{O}}_2\)/He mixtures using a hybrid repetitive nanosecond and DC discharge. Proc Combust Inst 37:5545–5552. https://doi.org/10.1016/j.proci.2018.05.106

    Article  CAS  Google Scholar 

  58. Matsika S (2007) Chapter 2: Conical intersections in molecular systems. In: Lipkowitz KB, Cundari TR, Boyd DB (eds) Reviews in computational chemistry, vol 23. Wiley, Hoboken, pp 83–124

    Google Scholar 

  59. Matsunaga N, Koseki S (2004) Chapter 2: Modeling of spin-forbidden reactions. In: Lipkowitz KB, Larter R, Cundari TR, Boyd DB (eds) Reviews in computational chemistry, vol 20. Wiley, Hoboken, pp 101–152

    Google Scholar 

  60. Mayer SW, Schieler L (1968) Activation energies and rate constants computed for reactions of oxygen with hydrocarbons. J Phys Chem 72:2628–2631

    CAS  Google Scholar 

  61. Carr RW Jr (1972) Predictions of the rates of hydrogen abstraction by \({\text{CH}}_2\)(\(^3B_1\)) by the bond-energy bond-order method. J Phys Chem 76:1581–1586

    CAS  Google Scholar 

  62. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822–2828

    CAS  Google Scholar 

  63. Mebel AM, Hayashi M, Kislov VV, Lin SH (2004) Theoretical study of oxygen isotope exchange and quenching in the O(\(^1D\)) + C\({\text{O}}_2\) reaction. J Phys Chem A 108:7983–7994

    CAS  Google Scholar 

  64. Mebel AM, Lin SH (1997) Excited electronic states of the methyl radical. Ab initio molecular orbital study of geometries, excitation energies and vibronic spectra. Chem Phys 215:329–341

    CAS  Google Scholar 

  65. Medved M, Urban M, Kello V, Diercksen GH (2001) Accuracy assessment of the ROHF-CCSD(T) calculations of static dipole polarizabilities of diatomic radicals: \({\text{O}}_2\), CN, and NO. J Mol Struct (THEOCHEM) 547:219–232

    CAS  Google Scholar 

  66. Miller WH, Handy NC, Adams JE (1980) Reaction path hamiltonian for polyatomic molecules. J Chem Phys 72:99–112

    CAS  Google Scholar 

  67. Minaev BF, Murugan NA, Agren H (2013) Dioxygen spectra and bioactivation. Int J Quantum Chem 113:1847–1867

    CAS  Google Scholar 

  68. Monge-Palacios M, Sarathy SM (2018) Ab initio and transition state theory study of the OH + \({\text{HO}}_2 \rightarrow {\text{H}}_2\)O + \({\text{O}}_2\)(\(^3\Sigma _g^-\))/\({\text{O}}_2\)(\(^1\Delta _g\)) reactions: yield and role of \({\text{O}}_2\)(\(^1\Delta _g\)) in \({\text{H}}_2{\text{O}}_2\) decomposition and in combustion of \({\text{H}}_2\). Phys Chem Chem Phys 20:4478–4489

    CAS  PubMed  Google Scholar 

  69. Njegic B, Gordon MS (2006) Exploring the effect of anharmonicity of molecular vibrations on thermodynamic properties. J Chem Phys 125:224102

    PubMed  Google Scholar 

  70. Ombrello T, Popov N (2015) Mechanisms of ethylene flame propagation enhancement by \({\text{O}}_2(a^1\Delta _g)\). Aerospace Lab, hal–01270947. https://doi.org/10.12762/2015.AL10-07

  71. Pelevkin AV, Loukhovitski BI, Sharipov AS (2017) Reaction of H\(_2\) with O\(_2\) in excited electronic states: reaction pathways and rate constants. J Phys Chem A 121:9599–9611. https://doi.org/10.1021/acs.jpca.7b09964

    Article  CAS  PubMed  Google Scholar 

  72. Pelevkin AV, Sharipov AS (2018) Reactions of electronically excited molecular nitrogen with H\(_2\) and \({\text{H}}_2\)O molecules: theoretical study. J Phys D Appl Phys 51:184003

    Google Scholar 

  73. Pershin AA, Torbin AP, Zagidullin MV, Mebel AM, Mikheyev PA, Azyazov VN (2018) Rate constants for collision-induced emission of \({\text{O}}_2(a^1\Delta _g)\) with He, Ne, Ar, Kr, \({\text{N}}_2\), C\({\text{O}}_2\) and SF\(_6\) as collisional partners. Phys Chem Chem Phys 20:29677–29683

    CAS  PubMed  Google Scholar 

  74. Petersson GA (2002) Quantum-mechanical prediction of thermochemical data. In: Cioslowski J (ed) Complete basis set models for chemical reactivity: from the helium atom to enzyme kinetics. Kluwer Academic Publishers, New York, pp 99–130

    Google Scholar 

  75. Polyansky OL, Ovsyannikov RI, Kyuberis AA, Lodi L, Tennyson J, Zobov NF (2013) Calculation of rotation-vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface. J Phys Chem A 117:9633–9643

    CAS  PubMed  Google Scholar 

  76. Popov NA (2016) Kinetics of plasma-assisted combustion: effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures. Plasma Sources Sci Technol 25:043002

    Google Scholar 

  77. Roos BO (1987) The complete active space self-consistent field method and its applications in electronic structure calculations. In: Lawley KP (ed) Advances in chemical physics: ab initio methods in quantum chemistry, part 2, vol 69. Wiley, Hoboken. https://doi.org/10.1002/9780470142943.ch7

    Chapter  Google Scholar 

  78. Ruscic B, Bross DH (2016) Active thermochemical tables (ATcT) values based on ver. 1.122 of the thermochemical network. https://atct.anl.gov/. Accessed Dec 2018

  79. Ryu SO, Shin KS, Hwang SM (2017) Determination of the rate coefficients of the \({\text{CH}}_4 + {\text{O}}_2 \rightarrow {\text{HO}}_2 + {\text{CH}}_3\) and \(\text{ HCO } + {\text{O}}_2 \rightarrow {\text{HO}}_2\) + CO reactions at high temperatures. Bull Korean Chem Soc 38:228–236

    CAS  Google Scholar 

  80. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  81. Schmidt MW, Gordon MS (1998) The construction and interpretation of MCSCF wavefunctions. Annu Rev Phys Chem 49:233–266

    CAS  PubMed  Google Scholar 

  82. Schmidt R (1992) Collisional deactivation of \({\text{O}}_2(^1\Sigma _g^+)\) by small polyatomic molecules. Ber Bunsenges Phys Chem 96:794–799

    CAS  Google Scholar 

  83. Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757

    CAS  PubMed  Google Scholar 

  84. Sharipov A, Starik A (2011) Theoretical study of the reaction of carbon monoxide with oxygen molecules in the ground triplet and singlet delta states. J Phys Chem A 115(10):1795–1803. https://doi.org/10.1021/jp110345s

    Article  CAS  PubMed  Google Scholar 

  85. Sharipov AS, Loukhovitski BI, Pelevkin AV, Kobtsev VD, Kozlov DN (2019) Polarizability of electronically excited molecular oxygen: theory and experiment. J Phys B At Mol Opt Phys 52:045,101

    Google Scholar 

  86. Sharipov AS, Loukhovitski BI, Starik AM (2017) Influence of vibrations of polyatomic molecules on dipole moment and static dipole polarizability: theoretical study. J Phys B At Mol Opt Phys 50:165101

    Google Scholar 

  87. Sharipov AS, Pelevkin AV (2019) On the reactivity of singlet delta oxygen with respect to the simplest hydrocarbons. Goren Vzryv (Mosk) Combust Explos 12:4–11 (in Russian, English abstract)

    Google Scholar 

  88. Sharipov AS, Starik AM (2012) Kinetic mechanism of CO–H\(_2\) system oxidation promoted by excited singlet oxygen molecules. Combust Flame 159:16–29. https://doi.org/10.1016/j.combustflame.2011.06.015

    Article  CAS  Google Scholar 

  89. Sharipov AS, Starik AM (2012) Theoretical study of the reaction of ethane with oxygen molecules in the ground triplet and singlet delta states. J Phys Chem A 116:8444–8454. https://doi.org/10.1021/jp304906u

    Article  CAS  PubMed  Google Scholar 

  90. Sharipov AS, Starik AM (2013) Analysis of the reaction and quenching channels in a H + \({ \rm O}_2(a^1\Delta _g)\) system. Phys Scr 88:058305. https://doi.org/10.1088/0031-8949/88/05/058305

    Article  CAS  Google Scholar 

  91. Sharipov AS, Starik AM (2015) Theoretical study of the reactions of ethanol with aluminum and aluminum oxide. J Phys Chem A 119:3897–3904. https://doi.org/10.1021/acs.jpca.5b01718

    Article  CAS  PubMed  Google Scholar 

  92. Silva-Junior MR, Schreiber M, Sauer SPA, Thiel W (2010) Benchmarks of electronically excited states: basis set effects on CASPT2 results. J Chem Phys 133:174,318

    Google Scholar 

  93. Simmie JM (2003) Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Prog Energy Combust Sci 29(6):599–634

    CAS  Google Scholar 

  94. Slanger TG, Cosby PC (1988) \({\text{O}}_2\) spectroscopy below 5.1 eV. J Phys Chem 92(2):267–282

    CAS  Google Scholar 

  95. Smirnov VV, Stelmakh OM, Fabelinsky VI, Kozlov DN, Starik AM, Titova NS (2008) On the influence of electronically excited oxygen molecules on combustion of hydrogen–oxygen mixture. J Phys D Appl Phys 41:192001. https://doi.org/10.1088/0022-3727/41/19/192001

    Article  CAS  Google Scholar 

  96. Srinivasan NK, Michael JV, Harding LB, Klippenstein SJ (2007) Experimental and theoretical rate constants for \({\text{CH}}_{4}+ {\text{O}}_{2} \rightarrow {\text{CH}}_{3} + {\text{HO}}_{2}\). Combust Flame 149:104–111. https://doi.org/10.1016/j.combustflame.2006.12.010

    Article  CAS  Google Scholar 

  97. Starik A, Sharipov A (2011) Theoretical analysis of reaction kinetics with singlet oxygen molecules. Phys Chem Chem Phys 13:16424–16436. https://doi.org/10.1039/c1cp21269a

    Article  CAS  PubMed  Google Scholar 

  98. Starik AM, Bezgin LV, Kopchenov VI, Loukhovitski BI, Sharipov AS, Titova NS (2013) Numerical study of the enhancement of combustion performance in a scramjet combustor due to injection of electric-discharge-activated oxygen molecules. Plasma Sources Sci Technol 22(6):065007. https://doi.org/10.1088/0963-0252/22/6/065007

    Article  Google Scholar 

  99. Starik AM, Kozlov VE, Titova NS (2010) On the influence of singlet oxygen molecules on the speed of flame propagation in methane–air mixture. Combust Flame 157(2):313–327. https://doi.org/10.1016/j.combustflame.2009.11.008

    Article  CAS  Google Scholar 

  100. Starik AM, Kozlov VE, Titova NS (2014) Modeling study of the possibility of HCCI combustion improvement via photochemical activation of oxygen molecules. Energy Fuels 28:2170–2178

    CAS  Google Scholar 

  101. Starik AM, Loukhovitski BI, Sharipov AS, Titova NS (2015) Physics and chemistry of the influence of excited molecules on combustion enhancement. Philos Trans R Soc A 373:20140,341

    Google Scholar 

  102. Starik AM, Pelevkin AV, Titova NS (2017) Modeling study of the acceleration of ignition in ethane–air and natural gas–air mixtures via photochemical excitation of oxygen molecules. Combust Flame 176:81–93

    CAS  Google Scholar 

  103. Starik AM, Titova NS (2003) Possibility of intensifying chain reactions in combustible mixtures by laser radiation exciting electronic states of \({\text{O}}_2\) molecules. Dokl Phys 48:398–404

    CAS  Google Scholar 

  104. Starik AM, Titova NS (2006) Intensification of the oxidation of rich methane/air mixtures by \({\text{O}}_2\) molecules excited to the \(a^1\Delta _g\) state. Kinet Catal 47(4):487–496

    CAS  Google Scholar 

  105. Starikovskaia SM (2014) Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms. J Phys D Appl Phys 47:353001

    Google Scholar 

  106. Starikovskiy A, Aleksandrov N (2013) Plasma-assisted ignition and combustion. Prog Energy Combust Sci 39:61–110. https://doi.org/10.1016/j.pecs.2012.05.003

    Article  CAS  Google Scholar 

  107. Strelkova MI, Kirillov IA, Potapkin BV, Safonov AA, Sukhanov LP, Umanskiy SY, Deminsky MA, Dean AJ, Varatharajan B, Tentner AM (2008) Detailed and reduced mechanisms of jet a combustion at high temperatures. Combust Sci Technol 180:1788–1802

    CAS  Google Scholar 

  108. Sumathi R, Green WH Jr (2002) A priori rate constants for kinetic modeling. Theor Chem Acc 108:187–213

    CAS  Google Scholar 

  109. Szabo P, Gustafsson M (2017) A surface-hopping method for semiclassical calculations of cross sections for radiative association with electronic transitions. J Chem Phys 147:094,308

    Google Scholar 

  110. Takayanagi T (2002) Quantum scattering calculations of the O(\(^1D\)) + \({\text{N}}_2\)(X\(^1\Sigma _g^+\)) \(\rightarrow\) O(\(^3P\)) + \({\text{N}}_2\)(X\(^1\Sigma _g^+\)) spin-forbidden electronic quenching collision. J Phys Chem A 106:4914–4921

    CAS  Google Scholar 

  111. Topaler MS, Allison TC, Schwenke DW, Truhlar DG (1998) Test of trajectory surface hopping against accurate quantum dynamics for an electronically nonadiabatic chemical reaction. J Phys Chem A 102:1666–1673

    CAS  Google Scholar 

  112. Troe J (1977) Theory of thermal unimolecular reactions at low pressures. II. Strong collision rate constants. Applications. J Chem Phys 66:4758–4774

    CAS  Google Scholar 

  113. Truhlar DG (1991) A simple approximation for the vibrational partition function of a hindered internal rotation. J Comput Chem 12:266–270

    CAS  Google Scholar 

  114. Tsang W, Hampson RF (1986) Chemical kinetic data base for combustion chemistry. J Phys Chem Ref Data 15(3):1087–1280

    CAS  Google Scholar 

  115. Tully JC (2012) Perspective: nonadiabatic dynamics theory. J Chem Phys 137:22A301

    PubMed  Google Scholar 

  116. Vagin NP, Kochetov IV, Napartovich AP, Yuryshev NN (2016) Acceleration of methane oxygen mixture ignition by adding singlet oxygen produced in a chemical generator. Bull Lebedev Phys Inst 43:211–216

    Google Scholar 

  117. Vagin NP, Kochetov IV, Napartovich AP, Yuryshev NN (2016) Influence of chemically produced singlet delta oxygen molecules on thermal ignition of \({\text{O}}_2\)\({\text{H}}_2\) mixtures. J Phys D Appl Phys 49:055505

    Google Scholar 

  118. Wang X, Ding S, Wang P, Xie J, Zhong W (2005) Algebraic approach to the potential energy surface and vibration energy of the transition molecule-HO\(_2\). Chin J Phys 43:1051–1057

    CAS  Google Scholar 

  119. Weltmann KD, Kolb JF, Holub M, Uhrlandt D, Šimek M, Ostrikov K, Hamaguchi S, Cvelbar U, Černák M, Locke B, Fridman A, Favia P, Becker K (2019) The future for plasma science and technology. Plasma Process Polym 16:e1800118. https://doi.org/10.1002/ppap.201800118

    Article  CAS  Google Scholar 

  120. West AC, Kretchmer JS, Sellner B, Park K, Hase WL, Lischka H, Windus TL (2009) O(\(^3P\)) + \(\text{ C }_2{\text{H}}_4\) potential energy surface: study at the multireference level. J Phys Chem A 113:12663–12674

    CAS  PubMed  Google Scholar 

  121. Woon DE, Dunning TH (1994) Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J Chem Phys 100:2975–2988

    CAS  Google Scholar 

  122. Yamaguchi Y, Teng Y, Shimomura S, Tabata K, Suzuki E (1999) Ab initio study for selective oxidation of methane with NO\(_x\) (\(x=1,2\)). J Phys Chem A 103:8272–8278

    CAS  Google Scholar 

  123. Zagidullin MV, Khvatov NA, Tolstov GI, Medvedkov IA, Mebel AM, Heaven MC, Azyazov VN (2018) \({\text{O}}_2(^1\Sigma _g^+)\) removal by \({\text{H}}_2\), CO, \({\text{N}}_2\)O, \({\text{CH}}_4\), and \(\text{ C }_2{\text{H}}_4\) in the 300–800 K temperature range. J Phys Chem A 122:5283–5288

    CAS  PubMed  Google Scholar 

  124. Zavitsas AA (1987) Quantitative relationship between bond dissociation energles, infrared stretching frequencies, and force constants in polyatomic molecules. J Phys Chem 91:5573–5577

    CAS  Google Scholar 

  125. Zhang F, Huang C, Xie B, Wu X (2019) Revisiting the chemical kinetics of \({\text{CH}}_3 + {\text{O}}_2\) and its impact on methane ignition. Combust Flame 200:125–134

    CAS  Google Scholar 

  126. Zhang J, Hu T, Lv H, Dong C (2016) H-abstraction mechanisms in oxidation reaction of methane and hydrogen: a CASPT2 study. Int J Hydrogen Energy 41:12722–12729

    CAS  Google Scholar 

  127. Zhu R, Lin MC (2001) The \({\text{CH}}_3 + {\text{HO}}_2\) reaction: first-principles prediction of its rate constant and product branching probabilities. J Phys Chem A 105:6243–6248. https://doi.org/10.1021/jp010698i

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Projects Nos. 17-01-00810 and 17-08-01423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Sharipov.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest. Also we declare that both the co-authors are aware of and approve of the submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 203 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelevkin, A.V., Sharipov, A.S. Interaction of CH4 with Electronically Excited O2: Ab Initio Potential Energy Surfaces and Reaction Kinetics. Plasma Chem Plasma Process 39, 1533–1558 (2019). https://doi.org/10.1007/s11090-019-10008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10008-7

Keywords

Navigation