Skip to main content
Log in

Evaluation of the Effect of Plasma Treatment Frequency on the Activation of Polymer Particles

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This study investigates the influence of treatment frequency (1–150 kHz) on the atmospheric plasma activation of both silicone and polyethylene terephthalate (PET) particles. These polymer particles with diameters in the range 3–5 mm, were treated using either helium or helium/oxygen gas mixtures, in a barrel atmospheric plasma system. The level of polymer particles activation was monitored using water contact angle measurements. The effect of plasma treatment frequency on barrel heating was monitored using an infrared thermographic camera, the maximum barrel temperature after 15 min treatment was found to be 98 °C at a frequency of 130 kHz. Optical emission spectroscopy was used as a diagnostic tool to monitor changes in atomic and molecular species spectral intensity with experimental conditions, as well as a change in electron energy distribution function. Electrical characterisation studies demonstrated an increase in plasma power with increasing frequency, in the range investigated. X-ray photoelectron spectroscopy analysis indicate an increase of oxygen content on polymer surfaces after plasma treatment. For silicone particles, the minimum polymer water contact angle was obtained by using a frequency of 130 kHz. After 15 min treatment time, the water contact angle decreased from 141° to 11°. While for PET particles the optimum treatment frequency was found to be 70 kHz, resulting in a water contact angle decreased from 94° to 32°. This lower frequency was used due to the partial melting of the PET (Tg of 80 °C), when treated at the higher frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen G, Chen S, Zhou M, Feng W, Gu W, Yang S (2006) J Phys D Appl Phys 39:5211–5215

    Article  CAS  Google Scholar 

  2. Abourayana H, Dowling D (2015) In: Aliofkhazraei M (ed) Plasma processing for tailoring the surface properties of polymers. Intech, Rijeka

    Chapter  Google Scholar 

  3. Pavlatova M, Horakova M, Hladik J, Spatenka P (2012) Acta Polytech 52:83–88

    CAS  Google Scholar 

  4. Vivien C, Wartelle C, Mutel B, Grimblot J (2002) Surf Interface Anal 34:575–579

    Article  CAS  Google Scholar 

  5. Patra N, Hladik J, Pavlatova M, Militký J, Martinová L (2013) Polym Degrad Stab 98:1489–1494

    Article  CAS  Google Scholar 

  6. Arpagaus C, Sonnenfeld A, Rudolf von Rohr P (2005) Chem Eng Technol 28:87–94

    Article  CAS  Google Scholar 

  7. Kim J, Kim Y, Choi H (2002) Korean J Chem Eng 19:632–637

    Article  CAS  Google Scholar 

  8. Claudia R, Ruggero B, Elena S, Giovanni M, Maria M, Bruno M, Giulio P (2003) Appl Surf Sci 211:386–397

    Article  Google Scholar 

  9. Abou Rich S, Dufour T, Leroy P, Nittler L, Pireaux J, Reniers F (2014) J Phys D Appl Phys 47:065203

    Article  Google Scholar 

  10. Donegan M, Milosavljevic V, Dowling D (2013) Plasma Chem Plasma Process 33:941–957

    Article  CAS  Google Scholar 

  11. Arpagaus C, Rudolf von Rohr P, Rossi A (2005) Surf Coat Technol 200:525–528

    Article  CAS  Google Scholar 

  12. Oberbossel G, Guntner A, Kundig L, Roth C, Rudolf von Rohr P (2015) Plasma Process Polym 12:285–292

    Article  CAS  Google Scholar 

  13. Quitzau M, Wolter M, Kersten H (2009) Plasma Process Polym 6:S392–S396

    Article  CAS  Google Scholar 

  14. Chebbi A, Sharkey M, Staunton C, McDonnell K, Dowling D (2015) Biointerphases 10:29507

    Article  Google Scholar 

  15. Abourayana H, Milosavljevic V, Dobbyn P, Cullen P, Dowling D (2016) Surf Coat Technol 308:435–441

    Article  CAS  Google Scholar 

  16. Abourayana H, Barry N, Dobbyn P, Dowling D (2015) J Min Metal Mater Eng 1:57–64

    Google Scholar 

  17. Nwankire C, Law V, Nindrayog A, Twomey B, Niemi K, Milosavljevic V, Graham W, Dowling D (2010) Plasma Chem Plasma Process 30:537–552

    Article  CAS  Google Scholar 

  18. Jidenko N, Petit M, Borra J (2006) J Phys D Appl Phys 39:281–293

    Article  CAS  Google Scholar 

  19. Milosavljević V, Ellingboe A, Daniels S (2011) Eur Phys J D 64:437–445

    Article  Google Scholar 

  20. Laux C, Spence T, Kruger C, Zare R (2003) Plasma Sources Sci Technol 12:125–138

    Article  CAS  Google Scholar 

  21. Machala Z, Janda M, Hensel K, Jedlovsky I, Lestinska L, Foltin V, Martisovits V, Morvova M (2007) J Mol Spectrosc 243:194–201

    Article  CAS  Google Scholar 

  22. Thiyagarajan M, Sarani A, Nicula C (2013) J Appl Phys 113:233302

    Article  Google Scholar 

  23. Xiong Q, Nikiforov A, González M, Leys C, Lu X (2013) Plasma Sources Sci Technol 22:15011

    Article  Google Scholar 

  24. Milosavljevic V, Donegan M, Cullen P, Dowling D (2014) J Phys Soc Jpn 83:014501

    Article  Google Scholar 

  25. Milosavljević V, Popović D, Ellingboe AR (2009) J Phys Soc Jpn 78:84501

    Article  Google Scholar 

  26. Krstulović N, Labazan I, Milošević S, Cvelbar U, Vesel A, Mozetic M (2006) J Phys D Appl Phys 39:3799–3804

    Article  Google Scholar 

  27. Kim D, Jung H, Gweon B, Moon S, Rhee J, Choe W (2011) Phys Plasmas 18:043503

    Article  Google Scholar 

  28. Nascimento F, Moshkalev S, Machida M (2015) arXiv.org

  29. Bibinov N, Fateev A, Wiesemann K (2001) J Phys D Appl Phys 34:1819–1826

    Article  CAS  Google Scholar 

  30. Paris P, Aints M, Laan M, Valk F (2004) J Phys D Appl Phys 37:1179–1184

    Article  CAS  Google Scholar 

  31. Paris P, Aints M, Valk F, Plank T, Haljaste A, Kozlov K, Wagner H (2005) J Phys D Appl Phys 38:3894–3899

    Article  CAS  Google Scholar 

  32. Mohan J, Ramamoorthy A, Ivanković A, Dowliong D, Murphy N (2014) J Adhes 90:733–754

    Article  CAS  Google Scholar 

  33. Twomey B, Nindrayog A, Niemi K, Graham W, Dowling D (2011) Plasma Chem Plasma Process 31:139–156

    Article  CAS  Google Scholar 

  34. Williams R, Wilson D, Rhodes N (2004) Biomaterials 25:4659–4673

    Article  CAS  Google Scholar 

  35. Yang S, Gupta M (2004) Surf Coat Technol 187:172–176

    Article  CAS  Google Scholar 

  36. Jongsoo K, Chaudhury M, Owen M, Orbeck T (2001) J Colloid Interface Sci 244:200–207

    Article  Google Scholar 

  37. Pandiyaraj K, Selvarajan V, Deshmukh R, Gao C (2009) Vacuum 83:332–339

    Article  Google Scholar 

  38. Gonzalez E, Barankin M, Guschl P, Hicks R (2008) Langmuir 24:12636–12643

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is partially support by the Irish Centre for Composites Research (IComp).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis P. Dowling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abourayana, H.M., Milosavljević, V., Dobbyn, P. et al. Evaluation of the Effect of Plasma Treatment Frequency on the Activation of Polymer Particles. Plasma Chem Plasma Process 37, 1223–1235 (2017). https://doi.org/10.1007/s11090-017-9810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9810-1

Keywords

Navigation