Skip to main content

Advertisement

Log in

Effect of Metal Vapours on the Radiation Properties of Thermal Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In metallurgic applications of thermal plasmas the presence of metal vapour, even in small proportion tends to increase the electron number density and to modify some basic properties such as the electrical conductivity and the radiation emission. In this paper we focus on the influence of these vapours on the radiation properties. After the definition of some necessary and basic functions and laws we briefly present the mechanisms responsible for emission and absorption of radiation in thermal plasmas. Then an important section is devoted to the role of metal vapours on the net emission coefficient which is the most popular parameter used to evaluate the radiation power losses in general models. It is shown that metal vapours increase the emission especially at low and intermediate temperatures (T < 12,000 K) and that their relative influence depends on the nature of the initial gas and of the metal itself. We list a rather important number of references presenting calculation of net emission in various gas–metal mixtures. Finally we show in a last section the influence of metal radiation on general plasma properties such as the energy transfer (other methods than the net emission coefficient), the cooling effect, the global energy balance and the heating of particulates injected in the plasma. The most spectacular effects are the increase of radiation losses in the energy balance and the complex role of the metal in the local cooling of the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas—fundamentals and applications. Plenum Press, New York

    Google Scholar 

  2. Cressault Y, Gleizes A (2013) Thermal plasma properties for Ar–Al, Ar–Fe and Ar–Cu mixtures used in welding plasmas processes. Part I: data tables of net emission coefficients. J Phys D Appl Phys 46:415206

    Article  Google Scholar 

  3. Cressault Y, Gleizes A, Riquel G (2012) Properties of air–aluminium thermal plasmas. J Phys D Appl Phys 45:265202

    Article  Google Scholar 

  4. Eckert ERG, Pfender E (1967) Advances in plasmas heat transfer. Adv Heat Transf 4:229–316

    Article  CAS  Google Scholar 

  5. Pfender E (1976) Heat transfer from thermal plasmas to neighboring walls or electrodes. Pure Appl Chem 48:199–213

    Article  CAS  Google Scholar 

  6. Chen X, Pfender E (1982) Unsteady heating and radiation effect of small particles in a thermal plasma. Plasma Chem Plasma Proc 2:293

    Article  CAS  Google Scholar 

  7. Chen X, Chyou YP, Lee YC, Pfender E (1985) Heat transfer to a particle under plasma conditions with vapor contamination from the particle. Plasma Chem Plasma Proc 5:119

    Article  CAS  Google Scholar 

  8. Menart J, Heberlein J, Pfender E (1996) E line-by-line method of calculating emission coefficients for thermal plasmas consisting of monoatomic species. J Quant Spectrosc Radiat Transf 56:377–398

    Article  CAS  Google Scholar 

  9. Menart J, Heberlein J, Pfender E (1999) Theoretical radiative transport results for a free-burning arc using a line-by-line technique. J Phys D Appl Phys 3:55–63

    Article  Google Scholar 

  10. Modest MF (1993) Radiative heat transfer. Mc-Graw-Hill Int. Ed., New York. ISBN 0-07-112742-9

    Google Scholar 

  11. Siegel R, Howell J (2002) Thermal radiation heat transfer, 4th edn. Taylor and Francis, London. ISBN 1-56032-839-8

    Google Scholar 

  12. Cabannes F, Chapelle J (1971) Spectroscopic Plasma Diagnostic. In: Venugopalan M (ed) Reactions under plasma conditions (Chap. 7), vol 1. Wiley-Interscience, New York

    Google Scholar 

  13. Gleizes A, Gongassian M, Rahmani B (1989) Continuum absorption coefficient in SF6 and SF6–N2 mixtures plasmas. J Phys D Appl Phys 22:83–89

    Article  CAS  Google Scholar 

  14. Biberman LM, Norman GE (1960) Continuous spectra of atomic gases and plasma. Opt Spectrosc 8:230

    Google Scholar 

  15. Hofsaess D (1977) Photoabsorption in alkali and alkaline earth elements calculated by the scaled Thomas Fermi method. Z Phys A 281:1–13

    Article  CAS  Google Scholar 

  16. Hofsaess D (1979) Photoionization cross sections calculated by the scaled Thomas-Fermi method (hv ≤ 50 eV). Atomic Data Nuclear Data Tables 24:285–321

    Article  CAS  Google Scholar 

  17. TOPbase data table. http://cdsweb.u-strasbg.fr/topbase/xsections.html

  18. Cressault Y, Hannachi R, Teulet P, Gleizes A, Gonnet J-P, Battandier J-Y (2008) Influence of metallic vapours on the properties of air thermal plasmas. Plasma Sour Sci Technol 17:035016

    Article  Google Scholar 

  19. Naghizadeh-Kashani Y, Cressault Y, Gleizes A (2002) Net emission coefficient of air thermal plasmas. J Phys D Appl Phys 35:2925–2934

    Article  CAS  Google Scholar 

  20. Chauveau S, Deron C, Perrin M-Y, Riviere P, Soufiani A (2003) Radiative transfer in LTE air plasmas for temperatures up to 15,000 K. J Quant Spectrosc Radiat Transf 77:113–130

    Article  CAS  Google Scholar 

  21. Jan C, Cressault Y, Gleizes A, Bousoltane K (2014) Calculation of radiative properties of SF6–C2F4 thermal plasmas-application to radiative transfer in high-voltage circuit breakers modelling. J Phys D Appl Phys 47:015204

    Article  Google Scholar 

  22. Ralchenko Y, Kramida AE, Reader J and NIST ASD team (2008), NIST Atomic spectra database (version 3.1.5). National Institute of Standards and Technology, Gaithersburg, MD. http://physics.nist.gov/asd3. Accessed May 2016

  23. Kurucz RL, Bell (1995) Atomic line data. Kurucz CD-ROM No. 23. Smithsonian Astrophysical Observatory, Cambridge, MA

  24. Cressault Y, Rouffet M-E, Gleizes A, Meillot E (2010) Net emission coefficient of Ar–H2–He thermal plasmas at atmospheric pressure. J Phys D Appl Phys 43:335204

    Article  Google Scholar 

  25. Herzberg G (1989) Molecular spectra and molecular structure: I. Spectra of diatomic molecules. Krieger, ISBN 0-89464-268-5; II. Infrared and Raman spectra of polyatomic molecules. Krieger, ISBN 0-89464-269-3; III. Electronic spectra and electronic structure of polyatomic molecules. Krieger, ISBN 0-89464-270-7

  26. Luque J, Crosley DR (1999) LIFBASE database and spectral simulation program (version 1.5). Presented at the SRI international report MP 99-009

  27. Laux C, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sour Sci Technol 12(2):25. http://www.specair-radiation.net/. Accessed June 2016

  28. Aubrecht V, Bartlova M (2009) Net emission coefficients of radiation in air and SF6 thermal plasmas. Plasma Chem Plasma Proc 29:131–147. doi:10.1007/s11090-008-9163-x

    Article  CAS  Google Scholar 

  29. Kloc P, Aubrecht V, Coufal O, Bartlova M (2014) Influence of copper vapour on the radiative transfer in thermal air plasma. In: International conference on gas discharges applications, GD2014, Orleans, France

  30. Aubrecht V, Bartlova M, Coufal O (2010) Radiative emission from air thermal plasmas with vapour of Cu or W. J Phys D Appl Phys 43:434007. doi:10.1088/0022-3727/43/43/434007

    Article  Google Scholar 

  31. Lowke JJ (1974) Predictions of arc temperature profiles using approximate emission coefficients for radiation losses. J Quant Spectrosc Radiat Transf 14:111–122

    Article  CAS  Google Scholar 

  32. Randrianandraina HZ, Cressault Y, Gleizes A (2011) Improvements of radiative transfer for SF6 thermal plasmas. J Phys D Appl Phys 44:194012

    Article  Google Scholar 

  33. Essoltani A, Proulx P, Boulos MI, Gleizes A (1990) Radiation and self-absorption in argon-iron plasmas at atmospheric pressure. JAAS 5:543–547

    CAS  Google Scholar 

  34. Gleizes A, Gonzalez J-J, Liani B, Raynal G (1993) Calculation of net emission coefficient of thermal plasmas in mixtures of gas with metallic vapour. J Phys D Appl Phys 26:1921–1927

    Article  CAS  Google Scholar 

  35. Essoltani A, Proulx P, Boulos MI, Gleizes A (1994) Volumetric emission of argon plasma in the presence of vapors of Fe, Si and Al. Plasma Chem Plasma Proc 14:437–450

    Article  CAS  Google Scholar 

  36. Essoltani A, Proulx P, Boulos MI, Gleizes A (1994) Effects of the presence of iron vapors of Ar/Fe, Ar/Fe/H2 plasmas. Plasma Chem Plasma Proc 14:301–315

    Article  CAS  Google Scholar 

  37. Raynal G, Vergne P-J, Gleizes A (1995) Radiative transfer in SF6 and SF6–Cu arcs. J Phys D Appl Phys 28:508–515

    Article  CAS  Google Scholar 

  38. Cressault Y, Gleizes A (2001) Radiative and transport properties in Ar–H2–Cu mixtures at atmospheric pressure. Progress in plasma processing of materials. Begell House, New York, pp 433–438

    Google Scholar 

  39. Paul K, Takemura T, Matsuno H, Hiramoto T, Dawson F, Gonzalez JJ, Gleizes A, Zissis G, Erraki A, Lavers J (2004) Predicted results of a HID DC current lamp considering a P − 1 radiation model. IEEE Trans Plasma Sci 32:118–126

    Article  CAS  Google Scholar 

  40. Hannachi R, Cressault Y, Teulet P, Ben Lakhdar Z, Gleizes A (2008) Net emission of H2O–air–MgCl2/CaCl2/NaCl thermal plasmas. J Phys D Appl Phys 41:205212

    Article  Google Scholar 

  41. Teulet P, Gonzalez J-J, Mercado-Cabrera A, Cressault Y, Gleizes A (2009) 1-D hydro-kinetic modelling of the decaying arc in air–PA66–copper mixtures. Part I. Chemical kinetics, thermodynamics, transport and radiative properties. J Phys D Appl Phys 42N:17-175201

    Google Scholar 

  42. Billoux T, Cressault Y, Boretskij VF, Veklich AN, Gleizes A (2012) Net emission coefficient of CO2–Cu thermal plasmas: role of copper and molecules. J Phys: Conf Ser 406:012027

    Google Scholar 

  43. Cressault Y, Teulet P, Zissis G (2016) Radiative properties of ceramic metal-halide high intensity discharge lamps containing additives in argon plasma. Jpn J Appl Phys 55(72):705

    Article  Google Scholar 

  44. Menart J, Heberlein J, Pfender E (1995) Theoretical radiative emission results for argon/copper thermal plasmas. Plasma Chem Plasma Proc 16:245–265

    Article  Google Scholar 

  45. Moscicki T, Hoffman J, Szymanski Z (2004) Emission coefficients of low temperature thermal iron plasma. Czech J Phys 54:C677–C682

    Article  Google Scholar 

  46. Moscicki T, Hoffman J, Szymanski Z (2008) Net emission coefficients of low temperature thermal iron–helium plasma. Opt Appl 38:365–373

    CAS  Google Scholar 

  47. Menart J, Malik S (2002) Net emission coefficients for argon–iron thermal plasmas. J Phys D Appl Phys 35:867

    Article  CAS  Google Scholar 

  48. Wendt M (2011) Net emission coefficients of argon iron plasmas with electron Stark widths scaled to experiments. J Phys D Appl Phys 44:125201

    Article  Google Scholar 

  49. Adineh VR, Coufal O, Zivny O (2012) Thermodynamic and radiative properties of plasma excited in EDM process through N2 taking into account Fe. IEEE Trans Plasma Sci 40:2723–2735. http://ieeexplore.ieee.org/document/6279489/?reload=true&arnumber=6279489

  50. Adineh VR, Coufal O, Bartlova M (2015) Calculation of net emission coefficient of electrical discharge machining arc plasmas in mixtures of nitrogen with graphite, copper and tungsten. J Phys D Appl Phys 48(40):405202. doi:10.1088/0022-3727/48/40/405202

    Article  Google Scholar 

  51. Nordborg H, Iordanidis A (2008) Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations. J Phys D Appl Phys 41:135205. doi:10.1088/0022-3727/41/13/135205

    Article  Google Scholar 

  52. Kloc P, Aubrecht V, Bartlova M, Coufal O, Ru C (2015) On the selection of integration intervals for the calculation of mean absorption coefficients. Plasma Chem Plasma Proc 35:1097–1110. doi:10.1007/s11090-015-9648-3

    Article  CAS  Google Scholar 

  53. Bartlova M, Bogatyreva N, Aubrecht V (2014) Radiation heat transfer in thermal argon plasma with iron vapors. Plasma Phys Technol 1(1):8–10

    Google Scholar 

  54. Kloc P, Aubrecht V, Coufal O (2015) Radiative transfer in air and air–Cu plasmas for two temperature profiles. J Phys D Appl Phys 48:5. doi:10.1088/0022-3727/48/5/055208

    Article  Google Scholar 

  55. Hannachi R, Cressault Y, Salem D, Teulet P, Bejo L, Ben Lakhdar Z (2012) Mean absorption coefficient of H2O–air–MgCl2/CaCl2/NaCl thermal plasmas. J Phys D Appl Phys 45:485206

    Article  Google Scholar 

  56. Murphy AB (2010) The effects of metal vapor in arc welding. J Phys D Appl Phys 43:434001

    Article  Google Scholar 

  57. Gleizes A, Gonzalez JJ, Liani B (1992) Net emission coefficient of mixtures of gas with metallic vapour and its influence on arc modelling. In: 10th international conference on gas discharges and applications, GD1992, Swansea, vol 1, pp 208–211

  58. Gonzalez J-J, Gleizes A, Proulx P, Boulos M (1993) Mathematical modeling of a free-burning arc in the presence of metal vapor. J Appl Phys 74:3065–3070

    Article  CAS  Google Scholar 

  59. Strachan DC (1973) Radiation losses from high-current free-burning arcs between copper electrodes. J Phys D Appl Phys 6:1712

    Article  Google Scholar 

  60. Cressault Y, Bauchire J-M, Hong D, Rabat H, Riquel G, Gleizes A (2015) Radiation of long and high power arcs. J Phys D Appl Phys 48:415201

    Article  Google Scholar 

  61. Essoltani A, Proulx P, Boulos MI, Gleizes A (1991) Radiative effects on plasma-particle heat transfer in the presence of metallic vapors. In: 10th international symposium on plasma chemistry, ISPC-10, Bochum, vol 1, pp 1–7

  62. Essoltani A, Proulx P, Boulos MI, Gleizes A (1993) A combined convective, conductive and radiative heat transfer study for an evaporating metallic particle under plasma conditions. J High Temp Chem Proc 2:37–46

    CAS  Google Scholar 

  63. Gleizes A, Cressault Y, Teulet P (2010) Mixing rules for thermal plasma properties in mixtures of argon, air and metallic vapours. Plasma Sour Sci Technol 19:055013

    Article  Google Scholar 

  64. Hong D, Sandolache G, Bauchire JM, Gentils F, Fleurier C (2005) A new optical technique for investigations of low-voltage circuit breakers. IEEE Trans Plasma Sci 33:976–981

    Article  Google Scholar 

  65. Salem D, Hannachi R, Cressault Y, Teulet P, Béji L (2015) Radiative properties of argon–helium–nitrogen–carbon–cobalt–nickel plasmas used in CNT synthesis. J Phys D Appl Phys 48:065202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Gleizes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gleizes, A., Cressault, Y. Effect of Metal Vapours on the Radiation Properties of Thermal Plasmas. Plasma Chem Plasma Process 37, 581–600 (2017). https://doi.org/10.1007/s11090-016-9761-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9761-y

Keywords

Navigation