Skip to main content

Advertisement

Log in

Rotating Gliding Arc Assisted Water Splitting in Atmospheric Nitrogen

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this study, hydrogen production from water splitting in N2 using an atmospheric pressure rotating gliding arc plasma was investigated. The effect of input H2O concentration and total flow rate on the performance of the plasma water splitting process (e.g., H2 and O2 yield, H2 production rate, and energy yield of H2) was investigated. N2 showed a pronouncedly facilitating effect on the H2O splitting and H2 production process due to the reactions of the excited N2 species [e.g., electronically excited metastable N2(A)] with the H2O molecules. The maximum H2 production rate reached up to 41.3 μmols−1, which is much higher than that of other typical non-thermal plasmas (e.g., ~0.2 μmols−1 for a dielectric barrier discharge). Optical emission diagnostics has shown that in addition to the NO, N2, and N2 + that were observed in the pure N2 spectra, strong OH and NH emission lines also appeared in the H2O/N2 spectra. OH radical is considered as a key intermediate species that could contribute to the formation of H2, O2, and H2O2. The increase of the H2O concentration could lead to a continuous enhancement of the OH intensity. The rotational temperature of N2 + dropped drastically from 2875 ± 125 to 1725 ± 25 K with the addition of 1 % (mol/mol) H2O into the N2 plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Simpson AP, Lutz AE (2007) Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrogen Energy 32:4811–4820

    Article  CAS  Google Scholar 

  2. Šingliar M (2007) Solar energy using for hydrogen production. Pet Coal 49:40–47

    Google Scholar 

  3. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  4. Domen K, Kondo JN, Hara M, Takata T (2000) Photo-and mechano-catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts. Bull Chem Soc Jpn 73:1307–1331

    Article  CAS  Google Scholar 

  5. Perkins C, Weimer AW (2004) Likely near-term solar-thermal water splitting technologies. Int J Hydrogen Energy 29:1587–1599

    Article  CAS  Google Scholar 

  6. Ni M, Leung MK, Leung DY, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425

    Article  CAS  Google Scholar 

  7. Tu X, Whitehead JC (2014) Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: co-generation of syngas and carbon nanomaterials. Int J Hydrogen Energy 39:9658–9669

    Article  CAS  Google Scholar 

  8. Liu SY, Mei DH, Shen Z, Tu X (2014) Nonoxidative conversion of methane in a dielectric barrier discharge reactor: prediction of reaction performance based on neural network model. J Phys Chem C 118:10686–10693

    Article  CAS  Google Scholar 

  9. Wang WZ, Murphy AB, Yan JD, Rong MZ, Spencer JW, Fang MTC (2012) Thermophysical properties of high-temperature reacting mixtures of carbon and water in the range 400–30,000 K and 0.1–10 atm. Part 1: equilibrium composition and thermodynamic properties. Plasma Chem Plasma Process 32:75–96

    Article  Google Scholar 

  10. Rehman F, Lozano-Parada JH, Zimmerman WB (2012) A kinetic model for H2 production by plasmolysis of water vapours at atmospheric pressure in a dielectric barrier discharge microchannel reactor. Int J Hydrogen Energy 37:17678–17690

    Article  CAS  Google Scholar 

  11. Kirkpatrick MJ, Locke BR (2005) Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Ind Eng Chem Res 44:4243–4248

    Article  CAS  Google Scholar 

  12. Koo IG, Choi MY, Kim JH, Cho JH, Lee WM (2008) Microdischarge in porous ceramics with atmospheric pressure high temperature H2O/SO2 gas mixture and its application for hydrogen production. Jpn J Appl Phys 47:4705

    Article  CAS  Google Scholar 

  13. Kabashima H, Einaga H, Futamura S (2003) Hydrogen generation from water, methane, and methanol with nonthermal plasma. IEEE Trans Ind Appl 39:340–345

    Article  CAS  Google Scholar 

  14. Burlica R, Shih K, Locke BR (2010) Formation of H2 and H2O2 in a water-spray gliding arc nonthermal plasma reactor. Ind Eng Chem Res 49:6342–6349

    Article  CAS  Google Scholar 

  15. Porter D, Poplin MD, Holzer F, Finney WC, Locke BR (2009) Formation of hydrogen peroxide, hydrogen, and oxygen in gliding arc electrical discharge reactors with water spray. IEEE Trans Ind Appl 45:623–629

    Article  CAS  Google Scholar 

  16. Burlica R, Locke BR (2008) Pulsed plasma gliding-arc discharges with water spray. IEEE Trans Ind Appl 44:482–489

    Article  CAS  Google Scholar 

  17. Zhang H, Du CM, Wu AJ, Bo Z, Yan JH, Li XD (2014) Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production. Int J Hydrogen Energy 39:12620–12635

    Article  CAS  Google Scholar 

  18. Cormier JM, Dudemaine M, Rusu I (2002) On a new magnetic blow out glidarc reactor. In: 8th International symposium on high pressure, low temperature plasma chemistry, Pühajärve, pp 176–180

  19. Cormier JM, Rusu I, Khacef A (2003) On the use of a magnetic blow out glidarc reactor for the syngas production by steam reforming. In: 16th International symposium on plasma chemistry, Toarmina

  20. Hnatiuc E, Burlui V, Ursache M, Astanei D, Hnatiuc B (2012) About the operation of the cold plasma GlidArc type reactors with rotary discharge and auxiliary electrodes. In: 13th International conference on optimization of electrical and electronic equipment, Brasov, pp 1353–1358

  21. Lee DH, Kim K, Cha MS, Song Y (2007) Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane. Proc Combust Inst 31:3343–3351

    Article  Google Scholar 

  22. Zhang H, Li XD, Zhang YQ, Chen T, Yan JH, Du CM (2012) Rotating gliding arc codriven by magnetic field and tangential flow. IEEE Trans Plasma Sci 40:3493–3498

    Article  Google Scholar 

  23. Zhang H, Li XD, Zhu FS, Bo Z, Cen KF, Tu X (2015) Non-oxidative decomposition of methanol into hydrogen in a rotating gliding arc plasma reactor. Int J Hydrogen Energy 40:15901–15912

    Article  CAS  Google Scholar 

  24. Park JY, Kostyuk PV, Han SB, Kim JS, Vu CN, Lee HW (2006) Study on optical emission analysis of AC air-water discharges under He, Ar and N2 environments. J Phys D Appl Phys 39:3805

    Article  CAS  Google Scholar 

  25. Zhang H, Zhu FS, Bo Z, Cen KF, Li XD (2015) Hydrogen production from methanol decomposition in a gliding arc discharge plasma with high processing capacity. Chem Lett 44:1315–1317

    Article  CAS  Google Scholar 

  26. Legrand JC, Diamy AM, Hrach R, Hrachova V (1997) Methane conversion in the flowing afterglow of a dinitrogen microwave plasma: initiation of the reaction. Contrib Plasma Phys 37:521–537

    Article  CAS  Google Scholar 

  27. Aerts R, Tu X, De Bie C, Whitehead JC, Bogaerts A (2012) An investigation into the dominant reactions for ethylene destruction in non-thermal atmospheric plasmas. Plasma Process Polym 9:994–1000

    Article  CAS  Google Scholar 

  28. Panousis E, Merbahi N, Clement F, Ricard A, Yousfi M, Papageorghiou L, Loiseau JF, Eichwald O, Held B, Spyrou N (2009) Atmospheric pressure dielectric barrier discharges under unipolar and bipolar HV excitation in view of chemical reactivity in afterglow conditions. IEEE Trans Plasma Sci 37:1004–1015

    Article  CAS  Google Scholar 

  29. Simek M, Babický V, Clupek M, DeBenedictis S, Dilecce G, Sunka P (1998) Excitation of N2(C) and NO(A) states in a pulsed positive corona discharge in, –O2 and –NO mixtures. J Phys D Appl Phys 31:2591

    Article  CAS  Google Scholar 

  30. Verreycken T, Bruggeman PJ (2014) OH density measurements in nanosecond pulsed discharges in atmospheric pressure N2–H2O mixtures. Plasma Sour Sci Technol 23:15009

    Article  Google Scholar 

  31. Ono R, Oda T (2001) OH radical measurement in a pulsed arc discharge plasma observed by a LIF method. IEEE Trans Ind Appl 37:709–714

    Article  CAS  Google Scholar 

  32. Srivastava N, Wang C (2011) Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet. J Appl Phys 110:053304

    Article  Google Scholar 

  33. Sun M, Wu Y, Li J, Wang NH, Wu J, Shang KF, Zhang JL (2005) Diagnosis of OH radical by optical emission spectroscopy in atmospheric pressure unsaturated humid air corona discharge and its implication to desulphurization of flue gas. Plasma Chem Plasma Process 25:31–40

    Article  Google Scholar 

  34. Bruggeman P, Iza F, Guns P, Lauwers D, Kong MG, Gonzalvo YA, Leys C, Schram DC (2010) Electronic quenching of OH (A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH (A–X) emission. Plasma Sour Sci Technol 19:15016

    Article  Google Scholar 

  35. Bruggeman P, Schram DC, Kong MG, Leys C (2009) Is the rotational temperature of OH (A–X) for discharges in and in contact with liquids a good diagnostic for determining the gas temperature? Plasma Process Polym 6:751–762

    Article  CAS  Google Scholar 

  36. Bruggeman P, Schram D, Gonzalez MA, Rego R, Kong MG, Leys C (2009) Characterization of a direct dc-excited discharge in water by optical emission spectroscopy. Plasma Sour Sci Technol 18:25017

    Article  Google Scholar 

  37. Pintassilgo CD, Loureiro J (2009) Production of hydrocarbons and nitriles using a N2–CH4 afterglow plasma for simulation of Titan’s atmosphere. Planet Space Sci 57:1621–1630

    Article  CAS  Google Scholar 

  38. Pintassilgo CD, Loureiro J (2010) Kinetic study of a N2-CH4 afterglow plasma for production of N-containing hydrocarbon species of Titan’s atmosphere. Adv Space Res 46:657–671

    Article  CAS  Google Scholar 

  39. Liu F, Wang W, Zheng W, Wang Y (2006) Optical study of radicals (OH, O, H, N) in a needle-plate bi-directional pulsed corona discharge. Eur Phys J D 38:515–522

    Article  CAS  Google Scholar 

  40. Eichwald O, Yousfi M, Hennad A, Benabdessadok MD (1997) Coupling of chemical kinetics, gas dynamics, and charged particle kinetics models for the analysis of NO reduction from flue gases. J Appl Phys 82:4781–4794

    Article  CAS  Google Scholar 

  41. Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sour Sci Technol 14:722

    Article  CAS  Google Scholar 

  42. Diamy A, Hrach R, Hrachova V, Legrand J (2001) Influence of C atom concentration for acetylene production in a CH4/N2 afterglow. Vacuum 61:403–407

    Article  CAS  Google Scholar 

  43. Tu X, Yu L, Yan JH, Cen KF, Chéron BG (2009) Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow. Phys Plasmas 16:113506

    Article  Google Scholar 

  44. Van Helden JH, van den Oever PJ, Kessels W, Van de Sanden M, Schram DC, Engeln R (2007) Production mechanisms of NH and NH2 radicals in N2–H2 plasmas. J Phys Chem A 111:11460–11472

    Article  Google Scholar 

  45. Wang C, Wu W (2013) Simultaneous measurements of OH(A) and OH(X) radicals in microwave plasma jet-assisted combustion of methane/air mixtures around the lean-burn limit using optical emission spectroscopy and cavity ringdown spectroscopy. J Phys D Appl Phys 46:464008

    Article  Google Scholar 

  46. Jauberteau JL, Jauberteau I, Aubreton J (2002) NH3 and NHx<3 radicals synthesis downstream a microwave discharge sustained in an Ar–N2–H2 gas mixture. Study of surface reactive processes and determination of rate constants. J Phys D Appl Phys 35:665

    Article  CAS  Google Scholar 

  47. Burlica R, Kirkpatrick MJ, Locke BR (2006) Formation of reactive species in gliding arc discharges with liquid water. J Electrost 64:35–43

    Article  CAS  Google Scholar 

  48. Burlica R, Hnatiuc B, Hnatiuc E (2010) Hydrogen and hydrogen peroxide formation in the AC water-spray gliding arc reactor. In: IEEE 12th international conference on optimization of electrical and electronic equipment (OPTIM), pp 1355–1360

  49. Dorier JL, Gindrat M, Hollenstein C, Salito A, Loch M, Barbezat G (2001) Time-resolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch. IEEE Trans Plasma Sci 29:494–501

    Article  Google Scholar 

  50. Sarani A, Nikiforov AY, Leys C (2010) Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: optical emission spectroscopy and temperature measurements. Phys Plasmas 17:63504

    Article  Google Scholar 

  51. Zhang H, Zhu FS, Tu X, Bo Z, Cen KF, Li XD (2016) Characteristics of atmospheric pressure rotating gliding arc plasmas. Plasma Sci Technol 18(5) (in press)

  52. Luque J, Crosley DR (1999) LIFBASE: database and spectral simulation (version 1.5). SRI International report MP, pp 99–009

  53. Moon SY, Choe W (2003) A comparative study of rotational temperatures using diatomic OH, O2 and N2 + molecular spectra emitted from atmospheric plasmas. Spectrochim Acta, Part B 58:249–257

    Article  Google Scholar 

  54. Ono R, Teramoto Y, Oda T (2010) Effect of humidity on gas temperature in the afterglow of pulsed positive corona discharge. Plasma Sour Sci Technol 19:15009

    Article  Google Scholar 

  55. Czernichowski A, Nassar H, Ranaivosoloarimanana A, Fridman AA, Simek M, Musiol K, Pawelec E, Dittrichova L (1996) Spectral and electrical diagnostics of gliding arc. Acta Phys Pol, A 89:595–604

    Article  CAS  Google Scholar 

  56. Zhao T, Xu Y, Song Y, Li X, Liu J, Liu J, Zhu A (2013) Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra. J Phys D Appl Phys 46:345201

    Article  Google Scholar 

  57. Suib SL, Brock SL, Marquez M, Luo J, Matsumoto H, Hayashi Y (1998) Efficient catalytic plasma activation of CO2, NO, and H2O. J Phys Chem B 102:9661–9666

    Article  CAS  Google Scholar 

  58. Luo J, Suib S, Hayashi Y, Matsumoto H (2000) Water splitting in low-temperature ac plasmas at atmospheric pressure. Res Chem Intermed 26:849–874

    Article  CAS  Google Scholar 

  59. Lozano-Parada JH, Zimmerman WB (2010) The role of kinetics in the design of plasma microreactors. Chem Eng Sci 65:4925–4930

    Article  CAS  Google Scholar 

  60. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    Article  CAS  Google Scholar 

  61. Kabashima H, Einaga H, Futamura S (2001) Hydrogen generation from water with nonthermal plasma. Chem Lett 12:1314–1315

    Article  Google Scholar 

  62. Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Energy Res 32:379–407

    Article  CAS  Google Scholar 

  63. Kudo A (2006) Development of photocatalyst materials for water splitting. Int J Hydrogen Energy 31:197–202

    Article  CAS  Google Scholar 

  64. Chen X, Suib SL, Hayashi Y, Matsumoto H (2001) H2O splitting in tubular PACT (Plasma and catalyst integrated technologies) reactors. J Catal 201:198–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120101110099) and the Fundamental Research Funds for the Central Universities (2015FZA4011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Li or Xin Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhu, F., Li, X. et al. Rotating Gliding Arc Assisted Water Splitting in Atmospheric Nitrogen. Plasma Chem Plasma Process 36, 813–834 (2016). https://doi.org/10.1007/s11090-016-9700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9700-y

Keywords

Navigation