Skip to main content
Log in

Nonthermal Plasma Synthesis of Nanocrystals: Fundamentals, Applications, and Future Research Needs

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Nonthermal plasma synthesis has emerged as a viable alternative to nanocrystal synthesis in the liquid phase or by other gas phase based methods. The nonequilibrium environment containing free charge carriers enables the synthesis of nanocrystals with excellent crystallinity and narrow size distributions. This paper reviews the fundamental mechanisms involved in the synthesis of nanocrystals with nonthermal plasmas. It discusses the luminescent properties of plasma-produced silicon nanocrystals and their application in devices such as light emitting diodes. The ability of plasma synthesis to generate doped nanocrystals is a particularly appealing attribute. We present boron and phosphorous doped silicon nanocrystals and review their applications as near infrared plasmonic materials. Finally, the author presents his view of some important research needs in the area of nonthermal plasma synthesis of nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schaller RD, Klimov VI (2004) Phys Rev Lett 92(18):186601–186604

    Article  CAS  Google Scholar 

  2. Semonin OE, Luther JM, Choi S, Chen H-Y, Gao J, Nozik AJ, Beard MC (2011) Science 334(6062):1530–1533

    Article  CAS  Google Scholar 

  3. Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X (2014) Nature 515:96–99

    Article  CAS  Google Scholar 

  4. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Proc Natl Acad Sci USA 100(23):13549–13554

    Article  CAS  Google Scholar 

  5. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Plasmonics 2(3):107–118

    Article  CAS  Google Scholar 

  6. Pillai S, Green MA (2010) Sol Energy Mater Sol Cells 94(9):1481–1486

    Article  CAS  Google Scholar 

  7. Clavero C (2014) Nat Photonics 8(2):95–103

    Article  CAS  Google Scholar 

  8. Llordes A, Garcia G, Gazquez J, Milliron DJ (2013) Nature 500(7462):323–326

    Article  CAS  Google Scholar 

  9. Labelle AJ, Thon SM, Masala S, Adachi MM, Dong H, Farahani M, Ip AH, Fratalocchi A, Sargent EH (2015) Nano Lett 15(2):1101–1108

    Article  CAS  Google Scholar 

  10. Mangolini L, Thimsen E, Kortshagen U (2005) Nano Lett 5(4):655–659

    Article  CAS  Google Scholar 

  11. Schweigert VA, Schweigert IV (1996) J Phys D Appl Phys 29:655

    Article  CAS  Google Scholar 

  12. Stegner AR, Pereira RN, Klein K, Wiggers H, Brandt MS, Stutzmann M (2007) Phys B 401–402:541–545

    Article  Google Scholar 

  13. Pi XD, Gresback R, Liptak RW, Campbell SA, Kortshagen U (2008) Appl Phys Lett 92(12):123102

    Article  Google Scholar 

  14. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  15. Jurbergs D, Mangolini L, Rogojina E, Kortshagen U (2006) Appl Phys Lett 88:233116

    Article  Google Scholar 

  16. Cheng KY, Anthony R, Kortshagen UR, Holmes RJ (2011) Nano Lett 11(5):1952–1956

    Article  CAS  Google Scholar 

  17. Liu CY, Holman ZC, Kortshagen UR (2009) Nano Lett 9(1):449–452

    Article  CAS  Google Scholar 

  18. Ding Y, Sugaya M, Liu QM, Zhou S, Nozaki T (2014) Nano Energy 10:322–328

    Article  CAS  Google Scholar 

  19. Ding Y, Gresback R, Liu QM, Zhou S, Pi XD, Nozaki T (2014) Nano Energy 9:25–31

    Article  Google Scholar 

  20. Holman Z, Liu C, Kortshagen U (2010) Nano Lett 10(7):2661–2666

    Article  CAS  Google Scholar 

  21. Gresback R, Kramer NJ, Ding Y, Chen T, Kortshagen UR, Nozaki T (2014) ACS Nano 8(6):5650–5656

    Article  CAS  Google Scholar 

  22. Ifuku T, Otobe M, Itoh A, Oda S (1997) Jpn J Appl Phys 36:4031–4034

    Article  CAS  Google Scholar 

  23. Gorla CR, Liang S, Tompa GS, Mayo WE, Lu Y (1997) J Vac Sci Technol A 15:860

    Article  CAS  Google Scholar 

  24. Bapat A, Perrey C, Campbell S, Carter C, Kortshagen U (2003) J Appl Phys 94(3):1969–1974

    Article  CAS  Google Scholar 

  25. Knipping J, Wiggers H, Rellinghaus B, Roth P, Konjhodzic D, Meier C (2004) J Nanosci Nanotechnol 4(8):1039–1044

    Article  CAS  Google Scholar 

  26. Sankaran RM, Holunga D, Flagan RC, Giapis KP (2005) Nano Lett 5(3):537–541

    Article  CAS  Google Scholar 

  27. Nozaki T, Sasaki K, Ogino T, Asahi D, Okazaki K (2007) Nanotechnology 18(23):235603

    Article  Google Scholar 

  28. Askari S, Levchenko I, Ostrikov K, Maguire P, Mariotti D (2014) Appl Phys Lett 104(16):163103

    Article  Google Scholar 

  29. Barwe B, Stein A, Cibulka OE, Pelant I, Ghanbaja J, Belmonte T, Benedikt J (2015) Plasma Process Polym 12(2):132–140

    Article  CAS  Google Scholar 

  30. Rao NP, Tymiak N, Blum J, Neuman A, Lee HJ, Girshick SL, McMurry PH, Heberlein J (1998) J Aerosol Sci 29:707

    Article  CAS  Google Scholar 

  31. Holman Z, Kortshagen U (2010) Nanotechnology 21(33):335302

    Article  CAS  Google Scholar 

  32. Mangolini L, Kortshagen U (2009) Phys Rev E 79:026405

    Article  Google Scholar 

  33. Kramer NJ, Anthony RJ, Mamunuru M, Aydil ES, Kortshagen UR (2014) J Phys D Appl Phys 47(7):075202

    Article  Google Scholar 

  34. Cullis AG, Canham LT (1991) Nature 335:335–338

    Article  Google Scholar 

  35. Mangolini L, Jurbergs D, Rogojina E, Kortshagen U (2006) J Lumin 121:327–334

    Article  CAS  Google Scholar 

  36. Erwin SC, Zu L, Haftel MI, Efros AL, Kennedy TA, Norris DJ (2005) Nature 436(7047):91–94

    Article  CAS  Google Scholar 

  37. Galli G (2005) Nature 436(7047):32–33

    Article  CAS  Google Scholar 

  38. Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M (2013) Nat Nanotechnol 8(4):247–251

    Article  CAS  Google Scholar 

  39. Atwater HA, Polman A (2010) Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  40. Neumann O, Urban AS, Day J, Lal S, Nordlander P (2012) ACS Nano 7(1):42–49

    Article  Google Scholar 

  41. Luther JM, Jain PK, Ewers T, Alivisatos AP (2011) Nat Mater 10:361–366

    Article  CAS  Google Scholar 

  42. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2013) ACS Nano 8:834–840

    Article  Google Scholar 

  43. Link S, Mohamed MB, El-Sayed MA (1999) J Phys Chem B 103:3073–3077

    Article  CAS  Google Scholar 

  44. Manthiram K, Alivisatos AP (2012) J Am Chem Soc 134(9):3995–3998

    Article  CAS  Google Scholar 

  45. Kanehara M, Koike H, Yoshinaga T, Teranishi T (2009) J Am Chem Soc 131(49):17736–17737

    Article  CAS  Google Scholar 

  46. Gordon TR, Paik T, Klein DR, Naik GV, Caglayan H, Boltasseva A, Murray CB (2013) Nano Lett 13(6):2857–2863

    Article  CAS  Google Scholar 

  47. Buonsanti R, Llordes A, Aloni S, Helms BA, Milliron DJ (2011) Nano Lett 11(11):4706–4710

    Article  CAS  Google Scholar 

  48. Rowe DJ, Jeong JS, Mkhoyan KA, Kortshagen UR (2013) Nano Lett 13(3):1317–1322

    Article  CAS  Google Scholar 

  49. Zhou S, Pi X, Ni Z, Ding Y, Jiang Y, Jin C, Delerue C, Yang D, Nozaki T (2015) ACS Nano 9(1):378–386

    Article  CAS  Google Scholar 

  50. Thimsen E, Kortshagen UR, Aydil ES (2014) Chem Commun 50(61):8346–8349

    Article  CAS  Google Scholar 

  51. Kramer NJ, Schramke KS, Kortshagen UR (2015) Nano Lett 15:5597–5603

    Article  CAS  Google Scholar 

  52. Thimsen E, Johnson M, Zhang X, Wagner AJ, Mkhoyan KA, Kortshagen UR, Aydil ES (2014) Nat Commun 5:5822

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to his present and former students and postdoctoral researchers, whose work has been discussed in this paper. Specifically, this paper touched on the work of Professors Lorenzo Mangolini, Zachary Holman, Rebecca Anthony, Elijah Thimsen; Doctors David Rowe, Nicolaas Kramer, Ryan Gresback, Kai-Yuan Cheng; Ms. Katelyn Schramke, and Mr. Benjamin Greenberg. The author’s work discussed in this paper was supported by the University of Minnesota MRSEC under Award Number DMR-0819885 and DMR-1420013, the DOE Plasma Science Center for Control of Plasma Kinetics, the DOE Center for Advanced Solar Photophysics, and by the Army Office of Research under MURI Grant W911NF-12-1-0407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Kortshagen.

Additional information

This paper is not intended to be a comprehensive review. As a summary of an invited lecture, the paper has a natural bias towards the work done by the author’s research group. This should not be interpreted as a lack of the author’s respect for or awareness of the excellent work done by other researchers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kortshagen, U. Nonthermal Plasma Synthesis of Nanocrystals: Fundamentals, Applications, and Future Research Needs. Plasma Chem Plasma Process 36, 73–84 (2016). https://doi.org/10.1007/s11090-015-9663-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9663-4

Keywords

Navigation