Skip to main content
Log in

Plasma-Surface Interactions in Plasma Catalysis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper the various elementary plasma—surface interaction processes occurring in plasma catalysis are critically evaluated. Specifically, plasma catalysis at atmospheric pressure is considered. The importance of the various processes is analyzed for the most common plasma catalysis sources, viz. the dielectric barrier discharge and the gliding arc. The role and importance of surface chemical reactions (including adsorption, surface-mediated association and dissociation reactions, and desorption), plasma-induced surface modification, photocatalyst activation, heating, charging, surface discharge formation and electric field enhancement are discussed in the context of plasma catalysis. Numerous examples are provided to demonstrate the importance of the various processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Whitehead JC (2010) Pure Appl Chem 82:1329–1336

    Article  CAS  Google Scholar 

  2. Tatarova E, Bundaleska N, Sarrette JP, Ferreira CM (2014) Plasma Sources Sci Technol 23:063002

    Article  CAS  Google Scholar 

  3. Jõgi I, Erme K, Haljaste A, Laan M (2013) Eur Phys J Appl Phys 61:24305

    Article  Google Scholar 

  4. Maciuca A, Batiot-Dupeyrat C, Tatibouët JM (2012) Appl Catal B Environ 125:432–438

    Article  CAS  Google Scholar 

  5. Kim HH, Ogata A, Schiorlin M, Marotta E, Paradisi C (2011) Catal Lett 141:277–282

    Article  CAS  Google Scholar 

  6. Nozaki T, Tsukijihara H, Fukui W, Okazaki K (2007) Energy Fuels 21:2525–2530

    Article  CAS  Google Scholar 

  7. Nozaki T, Goujard V, Yuzawa S, Moriyama S, Agiral A, Okazaki K (2011) J Phys D Appl Phys 44:274010

    Article  Google Scholar 

  8. Bromberg L, Cohn DR, Rabinovich A, Alexeev N (1999) Int J Hydrog Energy 24:1131–1137

    Article  CAS  Google Scholar 

  9. Futamura S, Kabashima H, Annadurai G (2006) Catal Today 115:211–216

    Article  CAS  Google Scholar 

  10. Mei E, Zhu X, He Y, Yan JD, Tu X (2015) Plasma Sources Sci Technol 24:015011

    Article  CAS  Google Scholar 

  11. Kumar V, Kim JH, Jasinski JB, Clark EL, Sunkara MK (2011) Cryst Growth Des 11:2913–2919

    Article  CAS  Google Scholar 

  12. Kato T, Hatakeyama R (2012) Nature Nanotech 7:651–656

    Article  CAS  Google Scholar 

  13. Ostrikov K, Levchenko I, Cvelbar U, Sunkara M, Mozetic M (2010) Nanoscale 2:2012–2027

    Article  CAS  Google Scholar 

  14. Wang L, Zhao Y, Liu C, Gong W, Guo H (2013) Chem Commun 49:3787–3789

    Article  CAS  Google Scholar 

  15. Sobacchi MG, Saveliev AV, Fridman AA, Kennedy LA, Ahmed S, Krause T (2002) Int J Hydrog Energy 27:635–642

    Article  CAS  Google Scholar 

  16. Mingdong B, Xiyao B, Zhitao Z, Mindi B (2000) Plasma Chem Plasma Proc 20:511–520

    Article  CAS  Google Scholar 

  17. Mizushima T, Matsumoto K, Ohkita H, Kakuta N (2007) Plasma Chem Plasma Proc 27:1–11

    Article  CAS  Google Scholar 

  18. Kim HH, Teramoto Y, Negishi N, Ogata A (2015) Catal Today 256:13–22

    Article  CAS  Google Scholar 

  19. Neyts EC, Bogaerts A (2014) J Phys D Appl Phys 47:224010

    Article  Google Scholar 

  20. Ostrikov K, Neyts EC, Meyyappan M (2013) Adv Phys 62:113–224

    Article  CAS  Google Scholar 

  21. Neyts EC (2012) J Vac Sci Technol B 30:030803

    Article  Google Scholar 

  22. Kim HH (2011) Eur Phys J Appl Phys 55:13806

    Article  Google Scholar 

  23. Meyyappan M (2009) J Phys D Appl Phys 42:213001

    Article  Google Scholar 

  24. Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Appl Catal B Environ 85:1–9

    Article  CAS  Google Scholar 

  25. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324–333

    Article  Google Scholar 

  26. Kim HH (2004) Plasma Process Polym 1:91–110

    Article  Google Scholar 

  27. Zhang AJ, Zhu AM, Guo J, Xu Y, Shi C (2010) Chem Eng J 156:601–606

    Article  CAS  Google Scholar 

  28. Demidyuk V, Whitehead JC (2007) Plasma Chem Plasma Process 27:85–94

    Article  CAS  Google Scholar 

  29. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) J Phys D Appl Phys 44:274007

    Article  Google Scholar 

  30. Sentek J, Krawczyk K, Mlotek M, Kalczewska M, Kroker T, Kolb T, Schenk A, Gericke KH, Schmidt-Szalowski K (2010) Appl Catal B Environ 94:19–26

    Article  CAS  Google Scholar 

  31. Tu X, Whitehead JC (2014) Int J Hydrog Energy 39:9658–9669

    Article  CAS  Google Scholar 

  32. Tu X, Whitehead JC (2012) Appl Catal B Environ 125:439–448

    Article  CAS  Google Scholar 

  33. Tu X, Gallon HJ, Whitehead JC (2011) J Phys D Appl Phys 44:482003

    Article  Google Scholar 

  34. Neyts EC, Ostrikov K (2015) Catal Today 256:23–28

    Article  CAS  Google Scholar 

  35. Klasovsky F, Claus P (2008) Metal nanoclusters in catalysis: effects of nanoparticle size, shape and structure. In: Corain B, Schmid G, Toshima N (eds) Metal nanoclusters in catalysis and materials science: the issue of size control, chapter 8. Amsterdam, Elsevier

    Google Scholar 

  36. Huu TP, Gil S, Da Costa P, Giroir-Fendler A, Khacef A (2015) Catal Today. doi:10.1016/j.cattod.2015.03.001

    Google Scholar 

  37. Kogelschatz U (2003) Plasma Chem Plasma Process 23:1–46

    Article  CAS  Google Scholar 

  38. Wagner H-E, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF (2003) Vacuum 71:417–436

    Article  CAS  Google Scholar 

  39. Pappas D (2011) J Vac Sci Technol A 29:020801

    Article  Google Scholar 

  40. Xu X (2001) Thin Solid Films 390:237–242

    Article  CAS  Google Scholar 

  41. Belmonte T, Arnoult G, Henrion G, Gries T (2011) J Phys D Appl Phys 44:363001

    Article  Google Scholar 

  42. Babaeva NY, Kushner MJ (2013) J Phys D Appl Phys 46:025401

    Article  Google Scholar 

  43. Fridman A (2012) Plasma chemistry. Cambridge University Press, New York

    Google Scholar 

  44. Lie L, Bin W, Chi Y, Chengkang W (2006) Plasma Sci Technol 8:653–655

    Article  Google Scholar 

  45. Allah ZA, Whitehead JC (2015) Catal Today 256:76–79

    Article  Google Scholar 

  46. Lee H, Sekiguchi H (2011) J Phys D Appl Phys 44:274008

    Article  Google Scholar 

  47. Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O (1999) Prog Energy Combust Sci 25:211–231

    Article  CAS  Google Scholar 

  48. Yang YC, Lee BJ, Chun YN (2009) Energy 34:172–177

    Article  CAS  Google Scholar 

  49. Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK (1997) J Molec Catal A Chem 115:421–429

    Article  CAS  Google Scholar 

  50. Hammer B, Nørskov JK (2000) Adv Catal 45:71–129

    CAS  Google Scholar 

  51. Groß A (2003) Chem Phys Solid Surf 11:1–26

    Article  Google Scholar 

  52. Ertl G (2000) Adv Catal 45:1–69

    CAS  Google Scholar 

  53. Bronold FX, Deutsch H, Fehske H (2009) Eur Phys J D 54:519–544

    Article  CAS  Google Scholar 

  54. Ambrico PF, Ambrico M, Schiavulli L, Ligonzo T, Augelli V (2009) Appl Phys Lett 94:051501

    Article  Google Scholar 

  55. Ambrico PF, Ambrico M, Colaianni A, Schiavulli L, Dilecce G, De Benedictis S (2010) J Phys D Appl Phys 43:325201

    Article  Google Scholar 

  56. Guaitella O, Thevenet F, Guillard C, Rousseau A (2006) J Phys D Appl Phys 39:2964–2972

    Article  CAS  Google Scholar 

  57. Herschleb CT (2011) Ph.D. Thesis, Casimir Ph.D. series, Delft-Leiden, The Netherlands

  58. Haddou N, Ghezzar MR, Abdelmalek F, Ognie S, Addou A (2013) Plasma Sci Technol 15:915–922

    Article  Google Scholar 

  59. Cacciatore M, Rutigliano M (2009) Plasma Sources Sci Technol 18:023002

    Article  Google Scholar 

  60. Rettner CT, Auerbach DJ, Lee J (1996) J Chem Phys 105:10115

    Article  CAS  Google Scholar 

  61. Doornkamp C, Ponec V (2000) J Molec Catal A Chem 162:19–32

    Article  CAS  Google Scholar 

  62. Vannice MA (2007) Catal Today 123:18–22

    Article  CAS  Google Scholar 

  63. Dombrowski E, Peterson E, Del Sesto D, Utz AL (2015) Catal Today 244:10–18

    Article  CAS  Google Scholar 

  64. Lee MB, Yang QY, Ceyer ST (1987) J Chem Phys 85:1693

    Article  Google Scholar 

  65. Lee MB, Yang QY, Ceyer ST (1987) J Chem Phys 87:2724

    Article  CAS  Google Scholar 

  66. Smith RR, Killelea DR, DelSesto DF, Utz AL (2004) Science 304:992–995

    Article  CAS  Google Scholar 

  67. Juurlink LBF, Smith RR, Killelea DR, Utz AL (2005) Phys Rev Lett 94:208303

    Article  CAS  Google Scholar 

  68. Beckerle JD, Yang QY, Johnson AD, Ceyer ST (1987) J Chem Phys 86:7236–7237

    Article  CAS  Google Scholar 

  69. Beckerle JD, Johnson AD, Yang QY, Ceyer ST (1989) J Chem Phys 91:5756–5777

    Article  CAS  Google Scholar 

  70. Åkerlund C, Zorić I, Kasemo B (1996) J Chem Phys 104:7359

    Article  Google Scholar 

  71. Vattuone L, Gambardella P, Burghaus U, Cemic F, Cupolillo A, Valbusa U, Rocca M (1998) J Chem Phys 109:2490–2502

    Article  CAS  Google Scholar 

  72. Bonn M, Funk S, Hess C, Denzler D, Stampfl C, Scheffler M, Wolf M, Ertl G (1999) Science 285:1042

    Article  CAS  Google Scholar 

  73. Hertel T, Wolf M, Ertl G (1995) J Chem Phys 102:3414

    Article  CAS  Google Scholar 

  74. Polanyi M, Wigner E (1928) Z Phys Chem Abt A 139:439

    CAS  Google Scholar 

  75. Kang M, Kim BJ, Cho SM, Chung C-H, Kim BW, Han GY, Yoon KJ (2002) J Mol Catal A Chem 180:125–132

    Article  CAS  Google Scholar 

  76. Kim HH, Lee YH, Ogata A, Futamura S (2003) Catal Commun 4:347–351

    Article  CAS  Google Scholar 

  77. Diesen V (2011) Ph.D. Thesis, Stockholm, Sweden

  78. Lee BY, Park SH, Lee SC, Kang M, Choung SJ (2004) Catal Today 93–95:769–776

    Article  Google Scholar 

  79. Yu S, Liang Y, Sun S, Zhang K, Zhang J, Fang J (2013) PLoS One 8:e59974

    Article  CAS  Google Scholar 

  80. Sano T, Negishi N, Sakai E, Matsuzawa S (2006) J Mol Catal A Chem 245:235–241

    Article  CAS  Google Scholar 

  81. Rousseau A, Guaitella O, Gatilova L, Thevenet F (2005) Appl Phys Lett 87:221501

    Article  Google Scholar 

  82. Thevenet F, Guaitella O, Puzenat E, Herrmann JM, Rousseau A, Guillard C (2007) Catal Today 122:186–194

    Article  CAS  Google Scholar 

  83. Lee J, Sorescu DC, Deng X (2011) J Am Chem Soc 133:10066–10069

    Article  CAS  Google Scholar 

  84. Tan S, Zhao J, Wang Z, Ma C, Zhao A, Wang B, Luo Y, Yang J, Hou J (2011) Phys Rev B 84:155418

    Article  Google Scholar 

  85. Zhao A, Tan S, Li B, Wang B, Yang J, Hou JG (2013) Phys Chem Chem Phys 15:12428–12441

    Article  CAS  Google Scholar 

  86. Somers W, Bogaerts A, van Duin ACT, Neyts EC (2012) J Phys Chem C 116:20958–20965

    Article  CAS  Google Scholar 

  87. Somers W, Bogaerts A, van Duin ACT, Huygh S, Bal KM, Neyts EC (2013) Catal Today 211:131–136

    Article  CAS  Google Scholar 

  88. Kim HH, Tsubota S, Daté M, Ogata A, Futamura S (2007) Appl Catal A Gen 329:93–98

    Article  CAS  Google Scholar 

  89. Sivachandrian L, Thevenet F, Gravejat P, Rousseau A (2013) Chem Eng J 214:17–26

    Article  Google Scholar 

  90. Mok YS, Jwa E, Hyun YJ (2013) J Energy Chem 22:394–402

    Article  CAS  Google Scholar 

  91. Baraton L, He Z, Lee CS, Maurice JL, Cojocaru CS, Gourgues-Lorenzon AF, Lee YH, Pribat D (2011) Nanotechnology 22:085601

    Article  Google Scholar 

  92. Eckstein W, Garcia-Rosales C, Roth J (1993) Nucl Instrum Methods Phys Res B 83:95–109

    Article  CAS  Google Scholar 

  93. Jidenko N, Bourgeois E, Borra JP (2011) J Phys D Appl Phys 43:295203

    Article  Google Scholar 

  94. Holzer F, Kopinke FD, Roland U (2005) Plasma Chem Plasma Process 25:595–611

    Article  CAS  Google Scholar 

  95. Tirumala R, Benard N, Moreau E, Fenot M, Lalizel G, Dorignac E (2014) J Phys D Appl Phys 47:255203

    Article  Google Scholar 

  96. Kersten H, Deutsch H, Steffen H, Kroesen GMW, Hippler R (2001) Vacuum 63:385–431

    Article  CAS  Google Scholar 

  97. Rajasekaran P, Mertmann P, Bibinov N, Wandke D, Viöl W, Awakowicz P (2010) Plasma Process Polym 7:665–675

    Article  CAS  Google Scholar 

  98. Bogaerts A, Kozak T, Van Laer K, Snoeckx R (2015) Farad Dis. doi:10.1039/C5FD00053J

    Google Scholar 

  99. Tohma T, Masumoto H, Goto T (2002) Mater Trans 43:2880–2884

    Article  CAS  Google Scholar 

  100. Wodecka-Dus B, Czekaj D (2009) Arch Metall Mater 54:923–933

    CAS  Google Scholar 

  101. Gaspard P (2012) In: Mikhailov AS, Ertl G (eds) Proceedings of the international conference “engineering of chemical complexity”, Berlin Center for Studies of Complex Chemical Systems, World Scientific, Singapore, 4–8 July 2011

  102. Kim H-H, Ogata A (2012) Int J Plasma Environ Sci Technol 6:43–48

    Google Scholar 

  103. Takaki K, Chang JS, Kostov KG (2004) IEEE Trans Dielectrics Electrical Insul 11:481–490

    CAS  Google Scholar 

  104. Van Laer K, Bogaerts A (2015) Plasma Sources Sci. Technol. submitted

Download references

Acknowledgments

The author is indebted to many colleagues for fruitful discussions. In particular discussions with A. Bogaerts (University of Antwerp, Belgium), H.-H. Kim (AIST, Japan), J. C. Whitehead (University of Manchester, UK) and T. Nozaki (Tokyo Institute of Technology, Japan) are greatfully acknowledged and appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik C. Neyts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neyts, E.C. Plasma-Surface Interactions in Plasma Catalysis. Plasma Chem Plasma Process 36, 185–212 (2016). https://doi.org/10.1007/s11090-015-9662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9662-5

Keywords

Navigation