Skip to main content

Advertisement

Log in

Performance Evaluation of Hybrid Gas–Liquid Pulse Discharge Plasma-Induced Degradation of Polyvinyl Alcohol-Containing Wastewater

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A multi-needle-to-plate pulsed discharge plasma reactor was designed to investigate its potential for polyvinyl alcohol-containing wastewater (PVA) treatment. The effects of some operational parameters such as PVA initial concentration, pulse peak discharge voltage, air flow rate, solution pH value, and iron additives on PVA degradation were examined. The results indicated that PVA could be effectively degraded from aqueous solutions. PVA degradation efficiency was 76.0 % within 60 min’s discharge plasma treatment with 1.5 mmol L−1 Fe2+ addition. Decreasing PVA initial concentration and increasing pulse peak discharge voltage were both beneficial for PVA degradation. There existed appropriate air flow rate for obtaining great PVA degradation efficiency in the present study. A little acid environment was conducive to PVA degradation. The presence of Fe2+ and Cu2+ could both benefit PVA degradation, and the increment of Fe2+ and Cu2+ concentrations to a certain extent could enhance its degradation efficiency, as well as energy yield. PVA possible degradation mechanisms were discussed, and the degradation processes were mainly triggered by the reactions of PVA with \(^{ \cdot } {\text{OH}}\) radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Giroto JA, Guardani R, Teixeira ACSC, Nascimento CAO (2006) Chem Eng Process 45:523–532

    Article  CAS  Google Scholar 

  2. Yang QX, Zhang WY, Zhang H, Li YH, Li CM (2011) Bioresour Technol 102:3790–3798

    Article  CAS  Google Scholar 

  3. Tokiwa Y, Kawabata G, Jarerat A (2001) Biotechnol Lett 23:1937–1941

    Article  CAS  Google Scholar 

  4. Tsujiyama S, Okada A (2013) Biotechnol Lett. doi:10.1007/s10529-013-1281-8

    Google Scholar 

  5. Inoguchi Y, Chinn H (2011) Polyvinyl alcohols, SRI consulting. http://www.sriconsulting.com/CEH/Public/Reports/580.1810/. Accessed 14 Nov 2011

  6. Zhang B, Zhou Y (2003) Cotton Text Technol 31:17–20 (in Chinese)

    CAS  Google Scholar 

  7. Shan JC, Guan Y, Zheng QK, Han JS, Liu QS, Pu ZY (2009) J Appl Polymer Sci 113:860–867

    Article  CAS  Google Scholar 

  8. Schonberger H, Baumann A, Keller W (1997) Am Dyestuff Rep 86:9–18

    CAS  Google Scholar 

  9. Zhang YH, Chen W, Lv GC, Lv FZ, Chu PK, Guo WM, Cui BL, Zhang R, Wang H (2012) Water Sci Technol 65:2055–2060

    Article  CAS  Google Scholar 

  10. Phugare SS, Kalyani DC, Surwase SN, Jadhav JP (2011) Ecotoxicol Environ Safe 74:1288–1296

    Article  CAS  Google Scholar 

  11. Li M, Zhu Z, Pan X (2011) Starch-Starke 63:638–691

    Google Scholar 

  12. Yu H, Gu G, Song L (1996) Environ Technol 17:1261–1267

    Article  CAS  Google Scholar 

  13. Mo JH, Lee YH, Kim J, Jeong JY, Jegal J (2008) Dyes Pigments 76:429–434

    Article  CAS  Google Scholar 

  14. Ji ZJ, He YS, Zhang GJ (2006) Desalination 201:255–266

    Article  CAS  Google Scholar 

  15. Sun YY, Hua XY, Ge R, Guo AT, Guo ZY, Dong DM, Sun WT (2013) Environ Sci Pollut Res 20:5797–5805

    Article  CAS  Google Scholar 

  16. Wu Y, Lian Y, Liu J, Zhu TH (2008) Water Treat Technol 34:32–34

    CAS  Google Scholar 

  17. Oh SY, Kim HW, Park JM, Park HS, Yoon C (2009) J Hazard Mater 168:346–351

    Article  CAS  Google Scholar 

  18. Hu Y, Bai Y, Yu H, Zhang C, Chen J (2013) Bull Environ Contam Toxicol 91:314–319

    Article  CAS  Google Scholar 

  19. Sun B, Aye NN, Gao Z, Lv D, Zhu X, Sato M (2012) J Environ Sci (China) 24:840–845

    Article  CAS  Google Scholar 

  20. Wang HJ, Chen XY (2011) J Hazard Mater 186:1888–1892

    Article  CAS  Google Scholar 

  21. Finley JH (1961) Anal Chem 33:1925–1927

    Article  CAS  Google Scholar 

  22. Sellers RM (1980) Analyst 105:950–954

    Article  CAS  Google Scholar 

  23. Wang HJ, Li J, Quan X (2008) Appl Catal B Environ 83:72–77

    Article  CAS  Google Scholar 

  24. Sun B, Sato M, Clements JS (1999) J Phys D Appl Phys 32:1908–1915

    Article  CAS  Google Scholar 

  25. Bian WJ, Zhou MH, Lei LC (2007) Plasma Chem Plasma Process 27:337–348

    Article  CAS  Google Scholar 

  26. Barbara F, Romuald W (1993) IEEE Trans Elect Insul 28:932–940

    Article  Google Scholar 

  27. Zhang YZ, Zheng JT, Qu XF, Chen HG (2008) Chemosphere 70:1518–1524

    Article  CAS  Google Scholar 

  28. Gai K (2007) J Hazard Mater 146:249–254

    Article  CAS  Google Scholar 

  29. Zhang JB, Zheng Z, Zhang YN, Feng JW, Li JH (2008) J Hazard Mater 154:506–512

    Article  CAS  Google Scholar 

  30. Deng Y (2007) J Hazard Mater 146:334–340

    Article  CAS  Google Scholar 

  31. Kang YW, Hwang KY (2000) Water Res 34:2786–2790

    Article  CAS  Google Scholar 

  32. Herney-Ramirez J, Vicente MA, Madeira LM (2010) Appl Catal B Environ 98:10–26

    Article  CAS  Google Scholar 

  33. Kaplan LA, Reasoner DJ, Rice EW (1994) J Am Water Works Assoc 86:121–132

    CAS  Google Scholar 

  34. Neyens E, Baeyens J (2003) J Hazard Mater 98:33–50

    Article  CAS  Google Scholar 

  35. Zhang S, Yu H (2004) Water Res 38:309–316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation, P.R. China (Project No. 21107085) and the Initiative Funding Programs for Doctoral Research of Northwest A&F University (2013BSJJ121) for the financial supports to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhou Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Ma, T., Qu, G. et al. Performance Evaluation of Hybrid Gas–Liquid Pulse Discharge Plasma-Induced Degradation of Polyvinyl Alcohol-Containing Wastewater. Plasma Chem Plasma Process 34, 1115–1127 (2014). https://doi.org/10.1007/s11090-014-9565-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9565-x

Keywords

Navigation