Skip to main content
Log in

Plasma-Induced Synthesis of CuO Nanofibers and ZnO Nanoflowers in Water

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Fiber-shaped cupric oxide (CuO) nanoparticles and flower-shaped ZnO nanoparticles were facilely synthesized by plasma-induced technique directly from copper and zinc electrode pair in water, respectively. The phase composition, morphologies and optical property of nanoparticles have been investigated by energy dispersive X-ray analysis, X-ray powder diffraction, transmission electron microscopy and UV–vis. The in situ analysis by an optical emission spectroscopy clarified the formation mechanism. Plasma was generated from the discharge between a metal electrode pair in water by a pulse direct current power. CuO and ZnO nanoparticles were synthesized via almost the same formation mechanism, which were prepared via the rapid energetic radicals’ bombardment to electrodes’ surface, atom vapour diffusion, plasma expansion, solution medium condensation, and in situ oxygen reaction and further growth. This novel plasma-induced technique will become a potential application in nanomaterials synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Borzi RA, Stewart SJ, Mercader RC, Punte G, Garcia F (2001) J Magn Magn Mater 226–230(Part 2):1513–1515

    Article  Google Scholar 

  2. Jiang X, Herricks T, Xia Y (2002) Nano Lett 2(12):1333–1338

    Article  CAS  Google Scholar 

  3. Vanithakumari SC, Shinde SL, Nanda KK (2011) Mater Sci Eng B-Adv Funct Solid-State Mater 176(8):669–678

    Article  CAS  Google Scholar 

  4. Pierson JF, Thobor-Keck A, Billard A (2003) Appl Surf Sci 210(3–4):359–367

    Article  CAS  Google Scholar 

  5. Chen L, Shen Y, Bai J, Wang C (2009) J Solid State Chem 182(8):2298–2306

    Article  CAS  Google Scholar 

  6. Zhu H, Han D, Meng Z, Wu D, Zhang C (2011) Nanoscale Res Lett 6(1):181

    Article  Google Scholar 

  7. Yu Y, Zhang J (2009) Mater Lett 63(21):1840–1843

    Article  CAS  Google Scholar 

  8. Wang Y, Meng D, Liu X, Li F (2009) Cryst Res Technol 44(12):1277–1283

    Article  CAS  Google Scholar 

  9. Zhao Y, Zhao J, Li Y, Ma D, Hou S, Li L, Hao X, Wang Z (2011) Nanotechnology 22(11):115604

    Article  Google Scholar 

  10. Jin D, Miu X, Yu X, Wang L, Wang N, Wang L (2010) Mater Chem Phys 124(1):69–72

    Article  CAS  Google Scholar 

  11. Darezereshki E, Bakhtiari F (2011) J Min Metall Sect B-Metall 47(1):73–78

    Article  CAS  Google Scholar 

  12. Bayansal F, Kahraman S, Cankaya G, Cetinkara HA, Guder HS, Cakmak HM (2011) J Alloys Compd 509(5):2094–2098

    Article  CAS  Google Scholar 

  13. Liu J, Huang X, Li Y, Sulieman KM, He X, Sun F (2006) Cryst Growth Des 6(7):1690–1696

    Article  CAS  Google Scholar 

  14. Ranjbar-Karimi R, Bazmandegan-Shamili A, Aslani A, Kaviani K (2010) Phys B Condens Matter 405(15):3096–3100

    Article  CAS  Google Scholar 

  15. Deng C, Hu H, Ge X, Han C, Zhao D, Shao G (2011) Ultrason Sonochem 18(5):932–937

    Article  CAS  Google Scholar 

  16. Liu P, Li Z, Cai W, Fang M, Luo X (2011) RSC Adv 1(5):847–851

    Article  CAS  Google Scholar 

  17. Qin Y, Che R, Liang C, Zhang J, Wen Z (2011) J Mater Chem 21(11):3960–3965

    Article  CAS  Google Scholar 

  18. Khan F, Bilgainya R (2011) Curr Sci 100(11):1690–1695

    CAS  Google Scholar 

  19. Jia W, Reitz E, Shimpi P, Rodriguez EG, Gao P-X, Lei Y (2009) Mater Res Bull 44(8):1681–1686

    Article  CAS  Google Scholar 

  20. Zhao JG, Liu SJ, Yang SH, Yang SG (2011) Appl Surf Sci 257(22):9678–9681

    Article  CAS  Google Scholar 

  21. Outokesh M, Hosseinpour M, Ahmadi SJ, Mousavand T, Sadjadi S, Soltanian W (2011) Ind Eng Chem Res 50(6):3540–3554

    Article  CAS  Google Scholar 

  22. Cheng G (2011) Micro Nano Lett 6(9):774–776

    Article  CAS  Google Scholar 

  23. Saito G, Hosokai S, Tsubota M, Akiyama T (2011) J Appl Phys 110(2):023302

    Article  Google Scholar 

  24. Yao W-T, Yu S-H, Zhou Y, Jiang J, Wu Q-S, Zhang L, Jiang J (2005) J Phys Chem B 109(29):14011–14016

    Article  CAS  Google Scholar 

  25. Wang J, He S, Li Z, Jing X, Zhang M, Jiang Z (2009) J Chem Sci 121(6):1077–1081

    Article  CAS  Google Scholar 

  26. Chen L, Li L, Li G (2008) J Alloys Compd 464(1–2):532–536

    Article  CAS  Google Scholar 

  27. Al-Gaashani R, Radiman S, Tabet N, Daud AR (2011) J Alloys Compd 509(35):8761–8769

    Article  CAS  Google Scholar 

  28. Sun B, Sato M, Sid Clements J (1997) J Electrostatics 39(3):189–202

    Article  CAS  Google Scholar 

  29. Miron C, Bratescu MA, Saito N, Takai O (2011) Plasma Chem Plasma Process 30(5):619–631

    Article  Google Scholar 

  30. Acayanka E, Tiya Djowe A, Laminsi S, Tchoumkwé CC, Nzali S, Poupi Mbouopda A, Ndifon PT, Gaigneaux EM (2013) Plasma Chem Plasma Process 33(4):725–735

    Article  CAS  Google Scholar 

  31. Hu X, Cho SP, Takai O, Saito N (2012) Cryst Growth Des 12(1):119–123

    Article  Google Scholar 

  32. Hu X, Shen X, Takai O, Saito N (2013) J Alloys Compd 552:351–355

    Article  CAS  Google Scholar 

  33. Hu X, Takai O, Saito N (2013) Jpn J Appl Phys 52:01AN05

    Article  Google Scholar 

  34. Takai O (2008) Pure Appl Chem 80(9):2003–2011

    Article  CAS  Google Scholar 

  35. Zheng H, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP (2009) Science 324(5932):1309–1312

    Article  CAS  Google Scholar 

  36. Govender K, Boyle DS, Kenway PB, O’Brien P (2004) J Mater Chem 14(16):2575–2591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for New Century Excellent Talents in University (NCET-12-0733, China), Specially-Appointed Professors by Universities in Jiangsu Province (SPUJP-2012, China), the National Natural Science Foundation of China (Grant No. 51372113), and the Jiangsu Higher Education Institutions Natural Science Research Project (Grant No. 12KJB430008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulan Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Zhang, X., Shen, X. et al. Plasma-Induced Synthesis of CuO Nanofibers and ZnO Nanoflowers in Water. Plasma Chem Plasma Process 34, 1129–1139 (2014). https://doi.org/10.1007/s11090-014-9546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9546-0

Keywords

Navigation