Skip to main content
Log in

Effect of H2 Flow Rate on High-Rate Etching of Si by Narrow-Gap Microwave Hydrogen Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

For the purpose of realizing a low-cost production process of silane (SiH4) gas, we have proposed the high-rate etching of metallurgical-grade Si by narrow-gap microwave hydrogen plasma. In this paper, effect of hydrogen gas flow rate (0–10 L/min) on the etch rate has been investigated and correlated with the relative variation of hydrogen-atom density estimated by actinometry. By decreasing hydrogen gas flow rate, the etch rate gradually increases up to the maximum value of 11 μm/min at 2 L/min. This increase is well correlated with the increase of hydrogen-atom density due to the longer residence time of hydrogen molecules in the plasma. On the other hand, when the gas flow rate is lower than 2 L/min, the etch rate abruptly decreases with decreasing gas flow rate in spite of the increase of hydrogen-atom density. From the surface observations and Raman measurements, it is found that the decrease in etch rate in the lower flow rate range is attributed to the formation of microcrystalline Si particles due to the decomposition of generated-SiH4 molecules in the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Mara WC, Herring RB, Hunt LP (1990) Handbook of semiconductor silicon technology. Noyes, New Jersey

    Google Scholar 

  2. Zulehner W (2000) Mater Sci Eng B 73:7

    Article  Google Scholar 

  3. De Wild-Scholten M, Alsema E (2004) Refocus 5:46

    Article  Google Scholar 

  4. Pizzini S (1982) Sol Energy Mater 6:253

    Article  CAS  Google Scholar 

  5. Ma X, Yoshikawa T, Morita K (2012) J Alloys Compd 529:12

    Article  CAS  Google Scholar 

  6. Pizzini S (2009) Appl Phys A 96:171

    Article  CAS  Google Scholar 

  7. Pires JCS, Braga AFB, Mei PR (2003) Sol Energy Mater Sol Cells 79:347

    Article  CAS  Google Scholar 

  8. Hanazawa K, Yuge N, Kato Y (2004) Mater Trans 45:844

    Article  CAS  Google Scholar 

  9. Pires JCS, Otubo J, Braga AFB, Mei PR (2005) J Mater Process Technol 169:16

    Article  CAS  Google Scholar 

  10. Osokin VA, Shpak PA, Ishchenko VV, Panibratskii VA, Piyuk EL (2008) Metallurgist 52:121

    Article  CAS  Google Scholar 

  11. Jiang D, Tan Y, Shi S, Dong W, Gu Z, Guo X (2012) Vacuum 86:1417

    Article  CAS  Google Scholar 

  12. Mei PR, Moreira SP, Cardoso E, Côrtes ADS, Marques FC (2012) Sol Energy Mater Sol Cells 98:233

    Article  CAS  Google Scholar 

  13. Ohmi H, Kakiuchi H, Hamaoka Y, Yasutake K (2007) J Appl Phys 102:023302

    Article  Google Scholar 

  14. Ohmi H, Goto A, Kamada D, Hamaoka Y, Kakiuchi H, Yasutake K (2009) Appl Phys Lett 95:181506

    Article  Google Scholar 

  15. Yasutake K, Ohmi H, Kakiuchi H (2010) Mater Res Soc Symp Proc 1245:1245-A10-01

    Google Scholar 

  16. Ohmi H, Yamada T, Kakiuchi H, Yasutake K (2011) Jpn J Appl Phys 50:08JD01

    Article  Google Scholar 

  17. Badding JV, Hemley RJ, Mao HK (1991) Science 253:421

    Article  CAS  Google Scholar 

  18. Sandrock G, Reilly J, Graetz J, Zhou WM, Johnson J, Wegrzyn J (2005) Appl Phys A 80:687

    Article  CAS  Google Scholar 

  19. Borchers C, Khomenko TI, Lenov AV, Morozova OS (2009) Thermochim Acta 493:80

    Article  CAS  Google Scholar 

  20. Astashkevich SA, Käning M, Käning E, Kokina NV, Lavrov BP, Ohl A, Röpcke J (1996) J Quant Spectrosc Radiat Transf 56:725

    Article  CAS  Google Scholar 

  21. Xiao B, Kado S, Kajita S, Yamasaki D (2004) Plasma Phys Control Fusion 46:653

    Article  CAS  Google Scholar 

  22. Yamasaki D, Kado S, Xiao B, Iida Y, Kajita S, Tanaka S (2006) J Phys Soc Jpn 75:044501

    Google Scholar 

  23. Gicquel A, Chenevier M, Hassouni Kh, Tserepi A, Dubus M (1998) J Appl Phys 83:7504

    Article  CAS  Google Scholar 

  24. Geng ZC, Xu Y, Yang XF, Wang WG, Zhu AM (2005) Plasma Sources Sci Technol 14:76

    Article  CAS  Google Scholar 

  25. Coburn JW, Chen M (1980) J Appl Phys 51:3134

    Article  CAS  Google Scholar 

  26. Lavrov BP, Pipa AV (2002) Opt Spectrosc 92:647

    Article  CAS  Google Scholar 

  27. Chutjian A, Cartwright DC (1981) Phys Rev A 23:2178

    Article  CAS  Google Scholar 

  28. Gicquel A, Derkaoui N, Rond C, Benedic F, Cicala G, Moneger D, Hassouni K (2012) Chem Phys 398:239

    Article  CAS  Google Scholar 

  29. Umemoto H, Ohara K, Morita D, Nozaki Y, Masuda A, Matsumura H (2002) J Appl Phys 91:1650

    Article  CAS  Google Scholar 

  30. Veprek S, Wang C, Veprek-Heijman MGJ (2008) J Vac Sci Technol A 26(3):313

    Article  CAS  Google Scholar 

  31. Izumi A, Sato H, Hashioka S, Kubo M, Matsumura H (2000) Microelectron Eng 51–52:495

    Article  Google Scholar 

  32. Chabert P, Rousseau A, Gousset G, Leprince P (1998) J Appl Phys 84:161

    Article  CAS  Google Scholar 

  33. Abrefah J, Olander DR (1989) Surf Sci 209:291

    Article  CAS  Google Scholar 

  34. Gates SM, Kunz RR, Greenlief CM (1989) Surf Sci 207:364

    Article  CAS  Google Scholar 

  35. Inagaki K, Kanai R, Hirose K, Yasutake K (2011) J Nanosci Nanotechnol 11:2952

    Article  CAS  Google Scholar 

  36. Yamada T, Ohmi H, Kakiuchi H, Yasutake K (2012) Jpn J Appl Phys 51:10NA09

    Article  Google Scholar 

  37. Ma Y, Huang YL, Düngen W, Job R, Fahrner WR (2005) Phys Rev B 72:085321

    Article  Google Scholar 

  38. Lengsfeld P, Nickel NH, Fuhs W (2000) J Non Cryst Solids 266–269:659

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Yasushi Oshikane for all his advices in plasma emission measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T., Ohmi, H., Kakiuchi, H. et al. Effect of H2 Flow Rate on High-Rate Etching of Si by Narrow-Gap Microwave Hydrogen Plasma. Plasma Chem Plasma Process 33, 797–806 (2013). https://doi.org/10.1007/s11090-013-9461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9461-9

Keywords

Navigation