Skip to main content
Log in

Effect of Water Vapor on NO Removal in a DBD Reactor at Different Temperatures

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The present work investigates experimentally the effect of H2O vapor on the removal of NO at elevated temperatures. Breakdown voltage, discharge characteristics and NO removal efficiency were studied under various conditions of water vapor content. The experimental results indicate H2O can greatly enhance the NO removal efficiency from a NO/O2/N2/C2H4/H2O system, but the breakdown voltage increases as the relative humidity of the gas increases. Moreover, the effect of temperature on NO removal at a relative gas humidity of 30 % was analyzed. With an increase in temperature, E/N increased, producing more active species and energetic electrons; electron detachment also became significant at high temperature and the rates of major reactions were promoted, intensifying the conversion of NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tas MA, van Hardeveld R, van Veldhuizen EM (1997) Plasma Chem Plasma Process 17(4):371–391

    Article  CAS  Google Scholar 

  2. Shen X, Gao X, Li ZS, Li B, Zheng CH, Sun ZW, Ni MJ, Cen KF, Alden M (2012) Fuel 102:729–736

    Article  CAS  Google Scholar 

  3. Tsai CH, Wang YF, Yang HH, Liao CN (2008) J Hazard Mater 150(2):401–407

    Article  CAS  Google Scholar 

  4. Schmidt M, Basner R, Brandenburg R (2013) Plasma Chem Plasma Process 33(1):323–335

    Article  CAS  Google Scholar 

  5. Wang T, Sun BM, Xiao HP (2013) Plasma Chem Plasma Process 33(1):307–322

    Article  CAS  Google Scholar 

  6. Wang T, Sun BM, Xiao HP, Zeng JY, Duan EP, Xin J, Li C (2012) Plasma Chem Plasma Process 32(6):1189–1201

    Article  Google Scholar 

  7. Shin HH, Yoon WS (2003) Plasma Chem Plasma Process 23(4):681–704

    Article  CAS  Google Scholar 

  8. Yin SE, Sun BM, Gao XD, Xiao HP (2009) Plasma Chem Plasma Process 29(6):421–431

    Article  CAS  Google Scholar 

  9. Zhu AM, Sun Q, Niu JH, Xu Y, Song ZM (2005) Plasma Chem Plasma Process 25(4):371–386

    Article  CAS  Google Scholar 

  10. Manley TC (1943) Trans Electrochem Soc 84(1):83–96

    Article  Google Scholar 

  11. Ciesielska IL, Masajtis J (2007) Fibres Text East Eur 15(5–6):179–184

    CAS  Google Scholar 

  12. Xu X, Zhu TC (1996) Gas discharge physics. Fudan University Press, Shanghai

    Google Scholar 

  13. Shi HC, Wang WC, Yang DZ, Huo Y, Jia L (2011) Acta Phys Chim Sin 27(8):1979–1984

    CAS  Google Scholar 

  14. Aubry O, Cormier JM (2009) Plasma Chem Plasma Process 29(1):13–25

    Article  CAS  Google Scholar 

  15. Liu F, Wang W, Zheng W, Wang Y (2006) Eur Phys J D 38(3):515–522

    Article  CAS  Google Scholar 

  16. Liu F, Wang WC, Zheng W, Wang YN (2006) Plasma Chem Plasma Process 26(5):469–480

    Article  CAS  Google Scholar 

  17. Kim DJ, Kim KS (2003) IEEE Trans Plasma Sci 31(2):227–235

    Article  CAS  Google Scholar 

  18. Ravi V, Mok YS, Rajanikanth BS, Kang HC (2003) Fuel Process Technol 81(3):187–199

    Article  CAS  Google Scholar 

  19. Mok YS, Ravi V, Kang HC, Rajanikanth BS (2003) IEEE Trans Plasma Sci 31(1):157–165

    Article  CAS  Google Scholar 

  20. Sathiamoorthy G, Kalyana S, Finney WC, Clark RJ, Locke BR (1999) Ind Eng Chem Res 38(5):1844–1855

    Article  CAS  Google Scholar 

  21. Mizuno A, Shimizu K, Chakrabarti A, Dascalescu L, Furuta S (1995) IEEE Trans Ind Appl 31(5):957–963

    Article  CAS  Google Scholar 

  22. Nie Y, Wang JY, Zhong K, Wang LM, Guan ZC (2007) IEEE Trans Plasma Sci 35(3):663–669

    Article  CAS  Google Scholar 

  23. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Atmos Chem Phys 4(6):1461–1738

    Article  CAS  Google Scholar 

  24. Dorai R, Kushner MJ (2000) J Appl Phys 88(6):3739–3747

    Article  CAS  Google Scholar 

  25. Dorai R, Kushner MJ (2002) J Phys D Appl Phys 35(22):2954–2968

    Article  CAS  Google Scholar 

  26. Shang KF, Wu Y, Li J, Li GF, Li D (2007) Plasma Sources Sci Technol 16(1):104–109

    Article  CAS  Google Scholar 

  27. Tonkyn RG, Barlowa SE, Hoard JW (2003) Appl Catal B 40(3):207–217

    Article  CAS  Google Scholar 

  28. Mok YS, Dors M, Mizerazcyk J (2004) IEEE Trans Plasma Sci 32(2):799–807

    Article  CAS  Google Scholar 

  29. Lombardi G, Simiand NB, Jorand F, Magne L, Pasquiers S, Postel C, Vacher JR (2007) Plasma Chem Plasma Process 27(4):414–445

    Article  CAS  Google Scholar 

  30. Chang MB, Kushner MJ, Rood MJ (1992) Plasma Chem Plasma Process 12(4):565–580

    Article  CAS  Google Scholar 

  31. Yan K, Kanazawa S, Ohkubo T, Nomoto Y (1999) Plasma Chem Plasma Process 19(3):421–443

    Article  CAS  Google Scholar 

  32. Chalise PR, Wang Y, Mustafa KA, Watanabe M, Hayashi Y, Okino A, Hotta E (2004) IEEE Trans Plasma Sci 32(3):1392–1399

    Article  CAS  Google Scholar 

  33. Chang MB, Yang SC (2001) AIChE J 47(5):1226–1233

    Article  CAS  Google Scholar 

  34. Donko Z (2011) Plasma Sources Sci Technol 20(2):024001

    Article  Google Scholar 

  35. Hagelaar GJM, Pitchford LC (2005) Plasma Sources Sci Technol 14(4):722–733

    Article  CAS  Google Scholar 

  36. Li S, Tang ZC, Gu F (2010) Heat Mass Transf 46(8–9):851–857

    Article  Google Scholar 

  37. Tanthapanichakoon W, Charinpanitkul T, Chaiyo S, Dhattavorn N, Chaichanawong J, Sano N, Tamon H (2004) Chem Eng J 97(2–3):213–223

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (51206047).

Conflict of interest

There is no potential conflict of interest about this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Sun, BM., Xiao, HP. et al. Effect of Water Vapor on NO Removal in a DBD Reactor at Different Temperatures. Plasma Chem Plasma Process 33, 681–690 (2013). https://doi.org/10.1007/s11090-013-9452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9452-x

Keywords

Navigation