Skip to main content
Log in

Interactive Phenomena of a Rotating Arc and a Premixed CH4 Flame

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The interactive phenomena between a rotating arc and a premixed methane/air flame have been investigated. The effects of the rotating arc on the flame were observed: both lean and rich flammability limit was extended with the rotating arc on. More interestingly, the opposite interactions, i.e., the effects of the flame on the rotating arc, were also observed: the arc length, angular speed, and electrical characteristics are affected by the flame. An analysis of the optical emission spectra showed that the rotating arc generates chemically active species such as excited N2 molecules and O and H atoms. An analysis of the gas products indicated that the concentrations of the major gas products such as CO2, CO, and H2 were not significantly affected by the rotating arc, although the flammability limit are significantly extended. Unlike these major gas products, minor products like NOx emissions increased by an order of magnitude in the presence of a rotating arc under certain air/fuel conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Horng R-F, Wen C-S, Liauh C-T, Chao Y, Huang C-T (2008) Int J Hydrogen Energy 33:7619–7629

    Article  Google Scholar 

  2. Pilla G, Galley D, Lacoste DA, Lacas F, Veynante D, Laux CO (2006) IEEE Trans Plasma Sci 34:2471–2477

    Article  ADS  Google Scholar 

  3. Kim W, Mungal MG, Cappelli MA (2010) Combust Flame 157:374–383

    Article  Google Scholar 

  4. Lee DH, Kim K-T, Cha MS, Lee JO, Song Y-H, Cho H, Kim Y-S, Song Y, Jee T (2009) SAE Paper 2009, 09SFL-0065

  5. Mintusov E, Serdyuchenko A, Choi I, Lempert WR, Adamovich IV (2009) Proceed Combust Inst 32:3181–3188

    Article  Google Scholar 

  6. Kim Y, Ferreri VW, Rosocha LA, Anderson GK, Abbate S, Kim K (2006) IEEE Trans Plasma Sci 34:2532–2536

    Article  ADS  Google Scholar 

  7. Chintala N, Meyer R, Hicks A, Bao A, Rich JW, Lempert WR, Adamovich IVJ (2005) Propuls Power 21:1–7

    Article  Google Scholar 

  8. Starikovskaia SMJ (2006) Phys D Appl Phys 39:R265–R299

    Article  ADS  Google Scholar 

  9. Ombrello T, Won SH, Ju Y, Williams S (2010) Combust Flame 157:1916–1928

    Article  Google Scholar 

  10. Adamovich IV, Choi I, Jiang N, Kim J-H, Keshav S, Lempert WR, Mintusov E, Nishihara M, Samimy M, Uddi M (2009) Plasma Sour Sci Technol 18:034018

    Article  ADS  Google Scholar 

  11. Ombrello T, Qin X, Ju Y, Gutsol A, Fridman A, Carter C (2006) AIAA J 44:142–150

    Article  ADS  Google Scholar 

  12. Lee DH, Kim KT, Cha MS, Song Y-H (2007) Proceed Combust Inst 31:3343–3351

    Article  Google Scholar 

  13. Rollier J-D, Gonzalez-Anguilar J, Petipas G, Darmon A, Fulcheri L, Metkemeijer R (2008) Energy Fuels 22:556

    Article  Google Scholar 

  14. Petipas G, Gonzalez-Anguilar J, Darmon A, Fulcheri L (2010) Energy Fuels 24:2607

    Article  Google Scholar 

  15. Lebouvier A, Fresnet F, Fabry F, Boch V, Rohani V, Cauneau F, Fulcheri L (1034) Energy Fuels 2011:25

    Google Scholar 

  16. Rueangjitt N, Sreethawong T, Chavadej S, Sekiguchi H (2011) Plasma Chem Plasma Process 31:517

    Article  Google Scholar 

  17. Lee DH, Kim K-T, Cha MS, Song Y-H (2010) Int J Hydrogen Energy 35:4668–4675

    Article  Google Scholar 

  18. Lee DH, Kim K-T, Cha MS, Song Y-H (2010) Int J Hydrogen Energy 53:10967–10976

    Article  Google Scholar 

  19. Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimici O (1998) Progress Energy Combust Sci 25:211–231

    Article  Google Scholar 

  20. Nassar H, Pellerin S, Musiol K, Martinie O, Pellerin N, Cormier J-MJ (2004) Phys D Appl Phys 37:1904–1916

    Article  ADS  Google Scholar 

  21. Pellerin S, Cormier J-M, Richard F, Musiol K, Chapelle JJ (1996) Phys D Appl Phys 29:726–739

    Article  ADS  Google Scholar 

  22. Pellerin S, Richard F, Chapelle J, Cormier J-M, Musiol KJ (2000) Phys D Appl Phys 33:2407–2419

    Article  ADS  Google Scholar 

  23. Pellerin S, Cormier J-M, Richard F, Musol K, Chapelle J (1999) J Phys D Appl Phys 32:891

    Article  ADS  Google Scholar 

  24. Richard F, Cormier J-M, Pellerin S, Chapelle JJ (1996) Appl Phys 79:2245–2250

    Google Scholar 

  25. Korolev YD, Matveev IB (2006) IEEE Trans Plasma Sci 34:2507–2513

    Article  ADS  Google Scholar 

  26. Korolev Y, Frants OB, Landl NV, Geyman VG, Matveev IB (2009) IEEE Trans Plasma Sci 37:586–592

    Article  ADS  Google Scholar 

  27. Benilov MS, Naidis GV (2006) Int J Hydrogen Energy 31:769–774

    Article  Google Scholar 

  28. Spyrou N, Manassis CJ (1989) Phys D Appl Phys 22:120–128

    Article  ADS  Google Scholar 

  29. Vincent RA, Larigaldie S, Magre P, Sabel’nikov V (2007) Plasma Sour Sci Technol 16:149–160

    Article  ADS  Google Scholar 

  30. Turns SR (1996) An introduction to combustion. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

This work is supported by the KIMM basic research program NK156B and the project “Ox and CO reduction with 3.5 ton/h burner aided by plasma” funded by KETEP. We are grateful for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Hoon Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, N., Lee, J., Lee, D.H. et al. Interactive Phenomena of a Rotating Arc and a Premixed CH4 Flame. Plasma Chem Plasma Process 32, 187–200 (2012). https://doi.org/10.1007/s11090-012-9349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9349-0

Keywords

Navigation