Skip to main content
Log in

Effect of Dielectric Barrier Discharge Treatment of Blood Plasma to Improve Rheological Properties of Blood

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The whole blood viscosity (WBV) is one of the major independent indicators for the risk of cardiovascular disease, stroke, and peripheral arterial diseases. Furthermore, oxidized LDL molecules are known to cause atherosclerotic plaques in arteries, and it is one of the key components that increase WBV. The present study attempted to reduce WBV by coagulating plasma proteins and lipid molecules from blood plasma using non-thermal dielectric barrier discharge (DBD) and removing them through filtration. The DBD treatment was found to produce coagulated particles in blood plasma. After filtration of the coagulated particles, WBV decreased by 9.1 and 17.7% for both systolic and diastolic blood viscosities, respectively. The present results suggest that the removal of excess plasma proteins and lipid molecules might be feasible using DBD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee AJ, Mowbray PI, Lowe G, Rumley A, Fowkes FGR, Allan PL (1998) Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study. Circulation 97(15):1467

    Google Scholar 

  2. Caimi G, Valenti A, Lo Presti R (2007) Acute myocardial infarction in young adults: evaluation of the haemorheological pattern at the initial stage, after 3 and 12 months. Ann Ist Super Sanita 43(2):139–143

    ADS  Google Scholar 

  3. Ciuffetti G, Schillaci G, Lombardini R, Pirro M, Vaudo G, Mannarino E (2005) Prognostic impact of low-shear whole blood viscosity in hypertensive men. Eur J Clin Invest 35(2):93–98

    Article  Google Scholar 

  4. Lee BK, Durairaj A, Mehra A, Wenby RB, Meiselman HJ, Alexy T (2008) Hemorheological abnormalities in stable angina and acute coronary syndromes. Clin Hemorheol Microcirc 39(1–4):43–51

    Google Scholar 

  5. Chien S (1986) Blood rheology in myocardial infarction and hypertension. Biorheology 23(6):633–653

    Google Scholar 

  6. Ernst E, Matrai A, Marshall M (1988) Blood rheology in patients with transient ischemic attacks. Stroke 19(5):634–636

    Article  Google Scholar 

  7. Fisher M, Meiselman HJ (1991) Hemorheological factors in cerebral ischemia. Stroke 22(9):1164–1169

    Article  Google Scholar 

  8. Velcheva I, Antonova N, Titianova E, Damianov P, Dimitrov N, Dimitrova V (2008) Hemorheological disturbances in cerebrovascular diseases. Clin Hemorheol Microcirc 39(1–4):391–396

    Google Scholar 

  9. Tsuda Y, Satoh K, Kitadai M, Takahashi T (1997) Hemorheologic profiles of plasma fibrinogen and blood viscosity from silent to acute and chronic cerebral infarctions. J Neurol Sci 147(1):49–54

    Article  Google Scholar 

  10. Cecchi E, Marcucci R, Poli D, Antonucci E, Abbate R, Gensini GF, Prisco D, Mannini L (2006) Hyperviscosity as a possible risk factor for cerebral ischemic complications in atrial fibrillation patients. Am J Cardiol 97(12):1745–1748

    Article  Google Scholar 

  11. Coull BM, Beamer N, de Garmo P, Sexton G, Nordt F, Knox R, Seaman GV (1991) Chronic blood hyperviscosity in subjects with acute stroke, transient ischemic attack, and risk factors for stroke. Stroke 22(2):162–168

    Article  Google Scholar 

  12. Le Devehat C, Khodabandehlou T, Vimeux M (2001) Impaired hemorheological properties in diabetic patients with lower limb arterial ischaemia. Clin Hemorheol Microcirc 25(2):43–48

    Google Scholar 

  13. Di Perri T, Forconi S, Agnusdei D, Guerrini M, Laghi Pasini F (1978) The effects of intravenous isoxsuprine on blood viscosity in patients with occlusive peripheral arterial disease. Br J Clin Pharmacol 5(3):255–260

    Google Scholar 

  14. Smith FB, Lee AJ, Hau CM, Rumley A, Lowe GD, Fowkes FG (2000) Plasma fibrinogen, haemostatic factors and prediction of peripheral arterial disease in the Edinburgh Artery Study. Blood Coagul Fibrinolysis 11(1):43–50

    Google Scholar 

  15. Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73(11):1983–1992

    Article  Google Scholar 

  16. Libby P, Okamoto Y, Rocha VZ, Folco E (2010) Inflammation in atherosclerosis: transition from theory to practice. Circ J 74(2):213–220

    Article  Google Scholar 

  17. Caro CG (2009) Discovery of the role of wall shear in atherosclerosis. Arterioscler Thromb Vasc Biol 29(2):158–161

    Article  Google Scholar 

  18. Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47(8):C7–C12

    Article  Google Scholar 

  19. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042

    Article  Google Scholar 

  20. Merrill EW, Cokelet GC, Britten A, Wells RE Jr (1963) Non-Newtonian rheology of human blood: effect of fibrinogen deduced by “subtraction”. Circ Res 13:48–55

    Google Scholar 

  21. Baskurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29(5):435–450

    Article  Google Scholar 

  22. Stoltz JF, Singh M, Riha P (1999) Hemorheology in practice. IOS Press, Wahington, DC

    Google Scholar 

  23. Baskurt OK, Meiselman HJ (2007) Hemodynamic effects of red blood cell aggregation. Indian J Exp Biol 45(1):25–31

    Google Scholar 

  24. Bandello F, Vigano D’Angelo S, Parlavecchia M, Tavola A, Della Valle P, Brancato R, D’Angelo A (1994) Hypercoagulability and high lipoprotein(a) levels in patients with central retinal vein occlusion. Thromb Haemost 72(1):39–43

    Google Scholar 

  25. Caen JP, Soria J, Collet JP, Soria C (1993) Fibrinogen, a vascular risk factor. Bull Acad Natl Med 177 (8):1433–1441; discussion 1441–1434

    Google Scholar 

  26. Chien S, Usami S, Dellenback RJ, Gregersen MI, Nanninga LB, Guest MM (1967) Blood viscosity: influence of erythrocyte aggregation. Science 157(3790):829–831

    Article  ADS  Google Scholar 

  27. Baskurt OK, Meiselman HJ (2009) Red blood cell “aggregability”. Clin Hemorheol Microcirc 43(4):353–354

    Google Scholar 

  28. Pasternak RC, Smith SC Jr, Bairey-Merz CN, Grundy SM, Cleeman JI, Lenfant C (2002) ACC/AHA/NHLBI clinical advisory on the use and safety of statins. Circulation 106(8):1024

    Article  Google Scholar 

  29. Amarenco P, Bogousslavsky J, Callahan A III, Goldstein LB, Hennerici M, Rudolph AE, Sillesen H, Simunovic L, Szarek M, Welch KM, Zivin JA (2006) High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med 355(6):549–559

    Article  Google Scholar 

  30. Davignon J (2001) Advances in lipid-lowering therapy in atherosclerosis. Adv Exp Med Biol 498:49–58

    Article  Google Scholar 

  31. LaRosa JC, He J, Vupputuri S (1999) Effect of statins on risk of coronary disease. JAMA 282(24):2340

    Article  Google Scholar 

  32. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90, 056 participants in 14 randomised trials of statins. Lancet 366(9493):1267–1278

    Article  Google Scholar 

  33. Collins R, Armitage J, Parish S, Sleight P, Peto R (2004) Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions. Lancet 363(9411):757–767

    Article  Google Scholar 

  34. Kearney PM, Blackwell L, Collins R, Keech A, Simes J, Peto R, Armitage J, Baigent C (2008) Efficacy of cholesterol-lowering therapy in 18, 686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371(9607):117–125

    Article  Google Scholar 

  35. Banyai S, Banyai M, Falger J, Jansen M, Alt E, Derfler K, Koppensteiner R (2001) Atorvastatin improves blood rheology in patients with familial hypercholesterolemia (FH) on long-term LDL apheresis treatment. Atherosclerosis 159(2):513–519

    Article  Google Scholar 

  36. Antons KA, Williams CD, Baker SK, Phillips PS (2006) Clinical perspectives of statin-induced rhabdomyolysis. Am J Med 119(5):400–409

    Article  Google Scholar 

  37. Kiortsis D, Filippatos T, Mikhailidis D, Elisaf M, Liberopoulos E (2007) Statin-associated adverse effects beyond muscle and liver toxicity. Atherosclerosis 195(1):7–16

    Article  Google Scholar 

  38. Cohen DE, Anania FA, Chalasani N (2006) An assessment of statin safety by hepatologists. Am J Cardiol 97(8):S77–S81

    Article  Google Scholar 

  39. Kalghatgi SU, Fridman G, Cooper M, Nagaraj G, Peddinghaus M, Balasubramanian M, Vasilets VN, Gutsol AF, Fridman A, Friedman G (2007) Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. IEEE Trans Plasma Sci 35(5):1559–1566

    Article  ADS  Google Scholar 

  40. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G (2007) Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process 27(2):163–176

    Article  Google Scholar 

  41. Stoffels E, Kieft I, Sladek R (2003) Superficial treatment of mammalian cells using plasma needle. J Phys D Appl Phys 36:2908

    Article  ADS  Google Scholar 

  42. Stoffels E, Sladek R, Kieft I (2004) Gas plasma effects on living cells. Physica Scripta 2004:79

    Article  Google Scholar 

  43. Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A, Brooks A (2006) Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process 26(4):425–442

    Article  Google Scholar 

  44. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Process Polym 5(6):503–533

    Article  Google Scholar 

  45. Chirokov A, Gutsol A, Fridman A (2005) Atmospheric pressure plasma of dielectric barrier discharges. Pure Appl Chem 77(2):487–495

    Article  Google Scholar 

  46. Kalghatgi SU, Fridman G, Fridman A, Friedman G, Clyne AM (2008) Non-thermal dielectric barrier discharge plasma treatment of endothelial cells. In 2008. IEEE, pp 3578–3581

  47. Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115020

    Article  Google Scholar 

  48. Ayan H, Fridman G, Staack D, Gutsol AF, Vasilets VN, Fridman AA, Friedman G (2009) Heating effect of dielectric barrier discharges for direct medical treatment. IEEE Trans Plasma Sci 37(1):113–120

    Article  ADS  Google Scholar 

  49. Kim S, Cho YI, Hogenauer WN, Kensey KR (2002) A method of isolating surface tension and yield stress effects in a U-shaped scanning capillary-tube viscometer using a Casson model. J Non-Newton Fluid Mech 103(2–3):205–219

    Article  MATH  Google Scholar 

  50. Matrai A, Whittington R, Ernst E (1985) Correction of blood viscosities to standard haematocrit: a simple new method. Clin Hemorheol 5:622

    Google Scholar 

  51. Matrai A, Whittington R, Ernst E (1987) A simple method of estimating whole blood viscosity at standardized hematocrit. Clin Hemorheol 7:261–265

    Google Scholar 

  52. Hall CE, Slayter HS (1959) The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol 5(1):11

    Article  Google Scholar 

  53. Mora S, Szklo M, Otvos JD, Greenland P, Psaty BM, Goff DC (2007) LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 192(1):211–217

    Article  Google Scholar 

  54. El Harchaoui K, van der Steeg WA, Stroes ESG, Kuivenhoven JA, Otvos JD, Wareham NJ, Hutten BA, Kastelein JJP, Khaw KT, Boekholdt SM (2007) Value of low-density lipoprotein particle number and size as predictors of coronary artery disease in apparently healthy men and women: The EPIC-norfolk prospective population study. J Am Coll Cardiol 49(5):547–553

    Article  Google Scholar 

  55. Jidenko N, Bourgeois E, Borra J-P (2010) Temperature profiles in filamentary dielectric barrier discharges at atmospheric pressure. J Phys D Appl Phys 43(29):295203

    Article  Google Scholar 

  56. Nozaki T, Miyazaki Y, Unno Y, Okazaki K (2001) Energy distribution and heat transfer mechanisms in atmospheric pressure non-equilibrium plasmas. J Phys D Appl Phys 34:3383–3390

    Article  ADS  Google Scholar 

  57. Bray JJ (1999) Lecture notes on human physiology, 2nd edn. Wiley, Blackwell

    Google Scholar 

  58. Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann KD, von Woedtke T (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process Polym 7(3–4):250–257

    Article  Google Scholar 

  59. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143

    Article  Google Scholar 

  60. Epstein FH, Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 326(4):242–250

    Article  Google Scholar 

  61. Sloop GD, Garber DW (1997) The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin Sci (Lond) 92(5):473–479

    Google Scholar 

  62. Sloop GD, Mercante DE (1998) Opposite effects of low-density and high-density lipoprotein on blood viscosity in fasting subjects. Clin Hemorheol Microcirc 19(3):197–203

    Google Scholar 

  63. Slyper A, Le A, Jurva J, Gutterman D (2005) The influence of lipoproteins on whole-blood viscosity at multiple shear rates. Metabolism 54(6):764–768

    Article  Google Scholar 

  64. Moriarty PM, Gibson CA, Kensey KR, Hogenauer W (2004) Effect of low-density lipoprotein cholesterol apheresis on blood viscosity. Am J Cardiol 93(8):1044–1046

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young I. Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J.M., Yang, Y., Lee, D.H. et al. Effect of Dielectric Barrier Discharge Treatment of Blood Plasma to Improve Rheological Properties of Blood. Plasma Chem Plasma Process 32, 165–176 (2012). https://doi.org/10.1007/s11090-011-9336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9336-x

Keywords

Navigation