Skip to main content
Log in

Deposition of Polyacrylic Acid Films by Means of an Atmospheric Pressure Dielectric Barrier Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The present work describes the plasma polymerisation of acrylic acid at atmospheric pressure. The influence of two operating parameters (monomer concentration and discharge power) on the properties of the deposited films is investigated. Results show that at a monomer concentration of 2.5 ppm and a discharge power of 9.5 W, the monomer is only slightly fragmented leading to a high amount of carboxylic acid groups on the deposited films. In contrast, when monomer concentration is decreased or discharge power increased, the incidence of monomer fragmentation processes is higher, leading to a lower amount of carboxylic acid groups on the films. This behaviour can be explained by a higher energy amount available per monomer molecule at low monomer concentrations and high discharge powers and a higher flux of positive ions attacking the surface at high discharge powers. Taking into account these results, it can be concluded that the deposition parameters should be carefully selected in order to preserve the stability of the monomer and thus obtain coatings with high carboxylic acid densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pan YV, Barrios EZ, Denton DD (1998) J Polym Sci Part A: Polym Chem 36:587

    Article  Google Scholar 

  2. Zhang C, Wyatt J, Weinkauf DH (2004) Polymer 45:7665

    Article  Google Scholar 

  3. Gengenbach TR, Griesser HJ (1998) J Polym Sci Part A: Polym Chem 36:985

    Article  Google Scholar 

  4. Martin Y, Boutin D, Vermette P (2007) Thin Solid Films 515:6844

    Article  ADS  Google Scholar 

  5. Topala I, Asandulesa M, Dumitrascu N, Popa G, Durand J (2008) J Optoelectron Adv Mater 10:2028

    Google Scholar 

  6. Arefi F, Andre V, Montazerrahmati P, Amouroux J (1992) Pure Appl Chem 64:715

    Article  Google Scholar 

  7. Kasih TP, Kuroda S, Kubota H (2007) Plasma Processes Polym 4:648

    Article  Google Scholar 

  8. Sawada Y, Ogawa S, Kogoma M (1995) J Phys D Appl Phys 28:1661

    Article  ADS  Google Scholar 

  9. Schwarz J, Schmidt M, Ohl A (1998) Surf Coat Technol 1998(98):859

    Article  Google Scholar 

  10. Lee SD, Hsiue GH, Chang PCT, Kao CY (1996) Biomaterials 17:1599

    Article  Google Scholar 

  11. Njatawidjaja E, Kodama M, Matsuzaki K, Yasuda K, Matsuda T, Kogoma M (2006) Surf Coat Technol 201:699

    Article  Google Scholar 

  12. Daw R, Candan S, Beck AJ, Devlin AJ, Brook IM, MacNeil S, Dawson RA, Short RD (1998) Biomaterials 19:1717

    Article  Google Scholar 

  13. Detomaso L, Gristina R, Senesi GS, d’Agostino R, Favia P (2005) Biomaterials 26:3831

    Article  Google Scholar 

  14. Gupta B, Plummer C, Bisson I, Frey P, Hilborn J (2002) Biomaterials 23:863

    Article  Google Scholar 

  15. Muguruma H, Karube I (1999) Trends Anal Chem 18:62

    Article  Google Scholar 

  16. Whittle JD, Bullett NA, Short RD, Douglas CWI, Hollander AP, Davies J (2002) J Mater Chem 12:2726

    Article  Google Scholar 

  17. Alexander MR, Duc TM (1998) J Mater Chem 8:937

    Article  Google Scholar 

  18. Jafari R, Tatoulian M, Morscheidt W, Arefi-Khonsari F (2006) React Funct Polym 66:1757

    Article  Google Scholar 

  19. Nedelmann H, Weigel T, Hicke HG, Muller J, Paul D (1999) Surf Coat Technol 119:973

    Article  Google Scholar 

  20. Rossini P, Colpo P, Ceccone G, Jandt KD, Rossi F (2003) Mater Sci Eng C 23:353

    Article  Google Scholar 

  21. Thyen R, Weber A, Klages CP (1997) Surf Coat Technol 97:426

    Article  Google Scholar 

  22. Kim JH, Liu GM, Kim SH (2006) J Mater Chem 16:977

    Article  Google Scholar 

  23. Tatoulian M, Arefi-Khonsari F, Borra JP (2007) Plasma Process Polym 4:360

    Article  Google Scholar 

  24. Alexandrov SE, Hitchman ML (2005) Chem Vap Deposition 11:457

    Article  Google Scholar 

  25. De Geyter N, Morent R, Leys C, Gengembre L, Payen E (2007) Surf Coat Technol 201:7066

    Article  Google Scholar 

  26. Martin S, Massines F, Gherardi N, Jimenez C (2004) Surf Coat Technol 177:693

    Article  Google Scholar 

  27. Morent R, De Geyter N, Axisa F, De Smet N, Gengembre L, De Leersnyder E, Leys C, Vanfleteren J, Rymarczyk-Machal M, Schacht E, Payen E (2007) J Phys D Appl Phys 40:7392

    Article  ADS  Google Scholar 

  28. Morent R, De Geyter N, Gengembre L, Leys C, Payen E, Van Vlierberghe S, Schacht E (2008) Eur Phys J Appl Phys 43:289

    Article  ADS  Google Scholar 

  29. Paulussen S, Rego R, Goossens O, Vangeneugden D, Rose K (2005) Surf Coat Technol 200:672

    Article  Google Scholar 

  30. Sonnenfeld A, Tun TM, Zajickova L, Kozlov KV, Wagner HE, Behnke JF, Hippler R (2002) Plasma Polym 6:237

    Article  Google Scholar 

  31. Korotkov RY, Goff T, Ricou P (2007) Surf Coat Technol 201:7207

    Article  Google Scholar 

  32. Kogelschatz U, Eliasson B, Egli W (1997) J Phys IV 7:47

    Article  Google Scholar 

  33. Kogelschatz U (2003) Plasma Chem Plasma Process 23:1

    Article  Google Scholar 

  34. Deng XT, Kong MG (2004) IEEE Trans Plasma Sci 32:1709

    Article  ADS  Google Scholar 

  35. Wagner HE, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF (2003) Vacuum 71:417

    Article  Google Scholar 

  36. Massines F, Rabehi A, Decomps P, Gadri RB, Segur P, Mayoux C (1998) J Appl Phys 83:2950

    Article  ADS  Google Scholar 

  37. Massines F, Segur P, Gherardi N, Khamphan C, Ricard A (2003) Surf Coat Technol 174:8

    Article  Google Scholar 

  38. Trunec D, Navratil Z, Stahel P, Zajickova L, Bursikova V (2004) J Phys D Appl Phys 37:2112

    Article  ADS  Google Scholar 

  39. Borcia G, Anderson CA, Brown NMD (2005) Plasma Sources Sci Technol 14:259

    Article  ADS  Google Scholar 

  40. Vignal V, Roux JC, Olive JM, Desjardins D, Genton V (1997) Acta Mater 46:149

    Article  Google Scholar 

  41. Hartley PG, Thissen H, Vaithianathan T, Griesser HJ (2000) Plasma Polym 5:47

    Article  Google Scholar 

  42. Nozaki T, Unno Y, Miyazaki Y, Okazaki K (2001) In: Bouchoule A, Pouvesle JM, Thomann AL, Bauchire JM, Robert E (eds) Proceedings of 15th international symposium on plasma chemistry 2001 (ISPC-15), vol 1. Orleans, GREMI, CNRS, Université of Orléans, pp 77–83

  43. Massines F, Gherardi N, Fornelli A, Martin S (2005) Surf Coat Technol 200:1855

    Article  Google Scholar 

  44. Radu I, Bartnikas R, Wertheimer MR (2003) IEEE Trans Plasma Sci 31:1363

    Article  ADS  Google Scholar 

  45. Akishev YS, Dem’yanov AV, Karal’nik VB, Pan’kin MV, Trushkin NI (2001) Plasma Phys Rep 27:164

    Article  ADS  Google Scholar 

  46. Sublet A, Ding C, Dorier JL, Hollenstein C, Fayet P, Coursimault F (2006) Plasma Sources Sci Technol 15:627

    Article  ADS  Google Scholar 

  47. Wu LG, Zhu CL, Liu M (2006) Desalination 192:234

    Article  Google Scholar 

  48. Socrates G (2001) Infrared and Raman characteristic group frequencies—tables and charts, 3rd edn. Wiley, West Sussex

    Google Scholar 

  49. Beck AJ, France RM, Leeson AM, Short RD, Goodyear A, Braithwaite NSJ (1998) Chem Commun 11:1221

    Article  Google Scholar 

  50. Briggs D (1990) In: Briggs D, Seah MP (eds) Practical surface analysis—volume 1—Auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley, West Sussex

Download references

Acknowledgments

E. Vanderleyden acknowledges the support of the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT). S. Van Vlierberghe is a postdoctoral fellow of the Research Foundation—Flanders (Belgium). This research was part of the Interuniversity Attraction Poles (IAP) Phase VI—Contract P6/08 (Belgian Science Policy). The authors wish to thank N. De Roo from the Department of Solid State Science (Faculty of Sciences—Ghent University) for recording the XPS data and Dr. L. Gengembre for his help with the XPS fitting procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rino Morent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morent, R., De Geyter, N., Van Vlierberghe, S. et al. Deposition of Polyacrylic Acid Films by Means of an Atmospheric Pressure Dielectric Barrier Discharge. Plasma Chem Plasma Process 29, 103–117 (2009). https://doi.org/10.1007/s11090-009-9167-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-009-9167-1

Keywords

Navigation