Skip to main content
Log in

Composition, Enthalpy, and Vaporization Temperature Calculation of Ag‐SiO2 Plasmas with Air in the Temperature Range from 1000 to 6000 K and for Pressure Included between 1 and 50 bars

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

With the Gibbs free energy minimization method, the molar fraction of chemical species are determined in temperature range included between 1000 and 6000 K for several proportions of air, silver and silica and for pressures included between 1 and 50 bars. The enthalpy and the vaporization temperature of liquid silver and liquid silica are studied. The key role of pressure on composition, enthalpy and the vaporization temperature is shown. The electrical neutrality is study, and the importance of ionized gaseous silver at low temperature is shown even for low amount of silver. The increase of electro‐negative ions (Ag and O) with pressure is shown. The vapor pressures fitting coefficients of Ag and SiO2 are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. J. C. Vérité, T. Boucher, A. Compte, M. Barrault, P. Chévrier, and C. Fievet, IEEE Trans. Magnetics 35(3), 1614–1617 (1999).

    Google Scholar 

  • 2. M. Lindmayer, Proc. 6th ICEFA (G. Crotti and G. Farina, eds.), Electromechanics Department, Istituto Elettrotecnico Nazionale Galileo Ferraris-Turin, Istituto Elettrotecnico Nazionale Galileo Ferraris, Torino, Sept. 1999, pp. 13–20.

  • 3. J. G. Leach, P. G. Newbery, and A. Wright, IEE Proc. 120(9), 987–993 (1973).

    Google Scholar 

  • 4. A. Wright and P. G. Newberry, Electric Fuses, 2nd ed., IEE Power Series, 1997.

  • 5. G. Crotti and G. Farina, Mathematical Modelling I, in Proc. 6th ICEFA, Electromechanics Department, Istituto Elettrotecnico Nazionale Galileo Ferraris-Turin, Istituto Elettrotecnico Nazionale Galileo Ferraris, Torino, 1999, pp. 13–39.

  • 6. G. Crotti and G. Farina, Mathematical Modelling II, in Proc. 6th ICEFA, Electromechanics Department, Istituto Elettrotecnico Nazionale Galileo Ferraris-Turin, Istituto Elettrotecnico Nazionale Galileo Ferraris, Torino, 1999, pp. 43–74.

  • 7. J. E. Daalder and E. F. Schreurs, Arcing Phenomena in High Voltage Fuses, Eindhoven University of Technology Report 83-E-137, 1983.

  • 8. W. Bussière and P. Andrè, J. Phys. D: Appl. Phys. 34, 1657–1674 (2001).

    Google Scholar 

  • 9. S. Gnanalingam and R. Wilkins, IEE Proc. 127(6), 434–440 (1980).

    Google Scholar 

  • 10. H. W. Turner and C. Turner, in Proc. 3rd Int. Symp. on Switching Arc Phenomena, Lodtz, Poland, 1997, pp. 334–337.

  • 11. W. Bussière, J. Phys. D: Appl. Phys. 34, 1007–1016 (2001).

    Google Scholar 

  • 12. W. Bussière, J. Phys. D: Appl. Phys. 34, 925–935 (2001).

    Google Scholar 

  • 13. K. Jakubiuk and T. Lipski, J. Phys. D: Appl. Phys. 26, 424–430 (1993).

    Google Scholar 

  • 14. Muhammad A. Saqib and Anthony D. Stokes, Thin Solid Films 345, 151–155 (1999).

    Google Scholar 

  • 15. Muhammad A. Saqib and Anthony D. Stokes, in J. Proc. 6th ICEFA, Torino, Sept. 1999, pp. 107–112.

  • 16. W. Bussière and P. Bezborodko, J. Phys. D: Appl. Phys. 32, 1693–1701 (1999).

    Google Scholar 

  • 17. Muhammad A. Saqib and Anthony D. Stokes, Measurement of Electron Density in a High-Voltage Fuse Arc, Proc. 6th ICEFA, Torino, Sept. 1999, pp. 129–132.

  • 18. Muhammad A. Saqib, Anthony D. Stokes, and P. J. Seebacher, in Proc. 6th ICEFA, Torino, Sept. 1999, pp. 83–88.

  • 19. W. Bussière, Thése de Doctorat d’Université, DU n° 1258, EDSF 301, Clermont-Fd (Dec. 2000).

  • 20. T. Lipski, in Proc. Conf. on Gas Discharges and their Applications, IEEE Conf. Pub., Oxford, 1985, pp. 87–90.

  • 21. V. Swamy and Surendra K. Saxena, J. Geophys. Res. 99(B6), 11787–11794 (1994).

    Google Scholar 

  • 22. A. A. Wasserman and H. J. Melosh, Lunar Planetary Sci. XXXII 2001.

  • 23. A. A. Wasserman and H. J. Melosh, Lunar Planetary Sci. XXXIII 2002.

  • 24. D. Morvan, P. Humbert, N. Madigou, J. Amouroux, and S. Cavvadias, [in French] Colloque C5, Tome 51, supplément au n° 18, 253–261 (1990).

  • 25. L. V. Gurvich, I. V. Veyts, and C. B. Alcock, Thermodynamic Properties of Individual Substances, 4th ed., Hemisphere Publishing Corporation, New York, 1991.

    Google Scholar 

  • 26. I. Barin, Thermochemical Data of Pure Substances, VCH, Germany, 1993.

    Google Scholar 

  • 27. JANAF, Thermochemical Tables, 4th ed., (M. W. Chases, ed.), J. Phys. Chem. Ref. Data, 9.

  • 28. C. E. Moore, Atomic Energy Levels, Circular of the National Bureau of Standards, Washington, Vols. I and III, 1971.

    Google Scholar 

  • 29. NIST Database 61, Database for Atomic Spectroscopy (DAS), National Institute of Standards and Technology, http://physics.nist.gov

  • 30. G. Herzberg, FRS, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed., D. Van Nostrand Company, Inc., Princeton, 1950.

    Google Scholar 

  • 31. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules, Vol. IV, Van Nostrand Reinhold, New York, 1979.

    Google Scholar 

  • 32. Honxing Zhang and K. Balasubramainan, J. Chem. Phys. 98(9), 7092–7097 (1993).

    Google Scholar 

  • 33. K. S. Drellishak, D. P. Aescliman, and Ali Bulent Cambel, Physics Fluids 8(9), 1590–1600 (1965).

    Google Scholar 

  • 34. S. Gordon and B. J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations, NASA SP-273, 1976.

  • 35. CRC Handbook of Chemistry and Physics 82nd ed. (David R. Lide, ed.), CRC Press, New York, 2001.

  • 36. A. T. Dindsale, CALPHAD 15(4), 317–425 (1991).

    Google Scholar 

  • 37. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquid, John Wiley & Sons, Inc., New York, 1954.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochette, D., Bussière, W. & André, P. Composition, Enthalpy, and Vaporization Temperature Calculation of Ag‐SiO2 Plasmas with Air in the Temperature Range from 1000 to 6000 K and for Pressure Included between 1 and 50 bars. Plasma Chem Plasma Process 24, 475–492 (2004). https://doi.org/10.1007/s11090-004-2280-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-004-2280-2

Keywords

Navigation