Skip to main content
Log in

Thin Sol–Gel Alumina Coating as Protection of a 9% Cr Steel Against Flue Gas Corrosion at 650 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Samples of sol–gel alumina-coated and uncoated P92 steel were exposed to flue gas at 650 °C for 300 h to register and characterize the early stages of the protection effect of that coating. As a result of this treatment, a 50-µm-thick bilayered oxide scale had formed on the surface of the uncoated sample. Below the scale a 40-µm-thick inner oxidation zone was detected. In contrast, the porous, micron-thick alumina coating enabled the formation of a chromium oxide scale with a thickness of some nanometres at the interface between steel substrate and coating. In this case, high-temperature corrosion of the steel was prevented so far.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. http://cordis.europa.eu/result/rcn/157138_en.html, accessed 2017/03/06.

  2. M. Łomozik, M. Zeman and J. Brózda, Archives of Civil and Mechanical Engineering 12, 49–59 (2012).

    Article  Google Scholar 

  3. K. Chandra, A. Kranzmann, R. Saliwan Neumann, G. Oder and F. Rizzo, Oxidation of Metals 83, 291–316 (2015).

    Article  Google Scholar 

  4. K. Chandra, A. Kranzmann, R. Saliwan Neumann and F. Rizzo, Oxidation of Metals 84, 463–490 (2015).

    Article  Google Scholar 

  5. Vallourec, V&M Technical Report, 19/03/13]; see also: http://www.vallourec.com/fossilpower/EN/Products/Pages/tp92.aspx; accessed 2015/06/26.

  6. M. Nofz, I. Dörfel, R. Sojref, N. Wollschläger, M. Mosquera-Feijoo and A. Kranzmann, Journal of Sol-Gel Science and Technology 81, 185–194 (2017).

    Article  Google Scholar 

  7. A. Kranzmann, T. Neddemeyer, A. S. Ruhl, D. Huenert, D. Bettge, G. Oder and R. Saliwan Neumann, International Journal of Greenhouse Gas Control 5, S168–S178 (2011).

    Article  Google Scholar 

  8. F. Abe, H. Kutsumi, H. Haruyama and H. Okubo, Corrosion Science 114, 1–9 (2017).

    Article  Google Scholar 

  9. S. Bouhieda, F. Rouillard and K. Wolski, Materials at High Temperatures 29, 151–158 (2012).

    Article  Google Scholar 

  10. S. Bouhieda, F. Rouillard, V. Barnier and K. Wolski, Oxidation of Metals 80, 493–503 (2013).

    Article  Google Scholar 

  11. A. P. Greeff, C. W. Louw and H. C. Swart, Corrosion Science 42, 1725–1740 (2000).

    Article  Google Scholar 

  12. C. Ostwald and H. J. Grabke, Corrosion Science 46, 1113–1127 (2004).

    Article  Google Scholar 

  13. T. Ishitsuka, Y. Inoue and H. Ogawa, Oxidation of Metals 61, 125–142 (2003).

    Article  Google Scholar 

  14. J. M. Gallardo Amores, V. Sanchez Escribano and G. Busca, Materials Chemistry and Physics 60, 168–176 (1999).

    Article  Google Scholar 

  15. S. J. Wilson and J. D. C. Connell, Journal of Solid State Chemistry 34, 315–322 (1980).

    Article  Google Scholar 

  16. I. Levin and D. Brandon, Journal of the American Ceramic Society 81, 1995–2012 (1998).

    Article  Google Scholar 

  17. Y. G. Wang, P. M. Bronsveld and J Th M DeHosson, Journal of the American Ceramic Society 81, 1655–1660(1998).

    Article  Google Scholar 

  18. M. Dressler, M. Nofz, I. Dörfel and R. Saliwan Neumann, Thin Solid Films 520, 4344–4349 (2012).

    Article  Google Scholar 

  19. A. C. Soares Sabioni, J. N. V. Souza, V. Ji, F. Jormand, V. Braz Tridade and J. F. Carneiro, Solid State Ionics 276, 1–8 (2015).

    Article  Google Scholar 

  20. S. Swaminathan, C. Malloka, N. G. Krishna, C. Thinaharan and T. Jayakumar, Corrosion Science 79, 59–68(2014).

    Article  Google Scholar 

  21. M. Dressler, M. Nofz, I. Dörfel and R. Saliwan Neumann, Surface and Coatings Technology 202, 6095–6102 (2008).

    Article  Google Scholar 

  22. W. Schulz, M. Nofz, M. Feigl, I. Dörfel, R. Saliwan Neumann and A. Kranzmann, Corrosion Science 68, 44–50 (2013).

    Article  Google Scholar 

  23. W. Schulz, M. Feigl, I. Dörfel, M. Nofz and A. Kranzmann, Thin Solid Films 539, 29–34 (2013).

    Article  Google Scholar 

  24. P. J. Ennis and W. J. Quaddakkers, International Journal of Pressure Vessels and Piping 84, 82–87 (2007).

    Article  Google Scholar 

  25. H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 379–402 (1999).

    Article  Google Scholar 

  26. H. Asteman, J.-E. Svensson and L.-G. Johannson, Oxidation of Metals 57, 193–216 (2002).

    Article  Google Scholar 

  27. H. Asteman, J.-E. Svensson, M. Norell and L.-G. Johannson, Oxidation of Metals 54, 11–26 (2000).

    Article  Google Scholar 

  28. M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson and L.-G. Johannson, Corrosion Science 48, 2014–2035 (2006).

    Article  Google Scholar 

  29. F. J. Pérez-Trujillo and S. I. Castaneda, Oxidation of Metals 66, 231–251 (2006).

    Article  Google Scholar 

  30. F. J. Pérez-Trujillo and S. I. Castaneda, Surface and Coatings Technology 201, 6239–6246 (2007).

    Article  Google Scholar 

  31. F. Rouillard, G. Moine, M. Tabarant and J. C. Ruiz, Oxidation of Metals 77, 57–70 (2012).

    Article  Google Scholar 

  32. E. Essuman, G. H. Meier, J. Jurek, M. Hansel, L. Singheiser and W. J. Quadakkers, Scripta Materialia 57, 845–848 (2007).

    Article  Google Scholar 

  33. E. Essuman, G. H. Meier, J. Jurek, M. Hansel and W. J. Quadakkers, Oxidation of Metals 69, 143–162 (2008).

    Article  Google Scholar 

  34. Ch Yu, D. Nguyen, J. Zhang and D. J. Young, Corrosion Science 98, 516–529 (2015).

    Article  Google Scholar 

  35. M. Schütze, M. Schorr, D. P. Renusch, A. Donchev and J. P. T. Vossen, Materials Research 7, 111–123 (2004).

    Article  Google Scholar 

  36. T. Gheno, D. Monceau, J. Zhang and D. J. Young, Corrosion Science 53, 2767–2777 (2011).

    Article  Google Scholar 

  37. G. Stein-Brzozowska, R. Norling, P. Viklund, J. Maier and G. Scheffknecht, Energy Procedia 51, 234–246 (2014 ).

    Article  Google Scholar 

  38. P. Papaiacovou, H. J. Grabke and P. Schmidt, Werkstoffe und Korrosion 36, 320–324 (1985).

    Article  Google Scholar 

  39. S. Mrowec and K. Przybylski, Oxidation of Metals 23, 107–139 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

This work was initiated and financially supported by the European project “Production of Coatings for New Efficient and Clean Coal Power Plant Materials” (POEMA, FP7-NMP, 310436). Special thanks to G. Oder for the EPMA investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nofz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nofz, M., Dörfel, I., Sojref, R. et al. Thin Sol–Gel Alumina Coating as Protection of a 9% Cr Steel Against Flue Gas Corrosion at 650 °C. Oxid Met 89, 453–470 (2018). https://doi.org/10.1007/s11085-017-9799-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9799-0

Keywords

Navigation