Skip to main content
Log in

Volatilization and Transport Mechanisms During Cr Oxidation at 300 °C Studied In Situ by ToF-SIMS

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of chromium at 300 °C was investigated in situ by ToF-SIMS for three different oxygen pressures (\(P_{{{\text{O}}_{2} }} = 2.0 \times 10^{ - 7}\), 6.0 × 10−7 and 2.0 × 10−6 mbar). Sequential exposure to the 18O isotopic tracer was performed to reveal the governing transport mechanism in the oxide film. The evolution of the oxide thickness was monitored. Volatilization of Cr2O3 was evidenced. A model was used to describe the kinetics resulting from the measurements. Both the parabolic and volatilization constants showed a dependence on oxygen partial pressure like \(P_{{{\text{O}}_{2} }}^{ - 1/n}\), with n = 1.9 ± 0.1, indicating a defect structure mainly consisting of oxygen vacancies. The re-oxidation in 18O2 shows a growth of the oxide layer at the metal/oxide interface, demonstrating an oxidation process governed by anionic transport via oxygen vacancies. The diffusion coefficient of oxygen in the oxide was determined by fitting the ToF-SIMS depth profiles. It is 2.0 × 10−18 cm2 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Sachitanand, M. Sattari, J. E. Svensson and J. Froitzheim, International Journal of Hydrogen Energy 38, 15328 (2013).

    Article  Google Scholar 

  2. S. P. Jiang and Y. Zhen, Solid State Ionics 179, 1459 (2008).

    Article  Google Scholar 

  3. V. A. C. Haanappel, T. Fransen and P. J. Gellings, High Temperature Materials and Processes 10, 91 (1992).

    Google Scholar 

  4. E. J. Opila, Journal of the American Ceramic Society 86, 1238 (2003).

    Article  Google Scholar 

  5. Y. Chen, T. Tan and H. Chen, Journal of Nuclear Science and Technology 45, 662 (2008).

    Article  Google Scholar 

  6. D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006).

    Article  Google Scholar 

  7. R. O. Adams, Journal of Vacuum Science and Technology A 1, 12 (1983).

    Article  Google Scholar 

  8. J. R. Lince, S. V. Didziulis, D. K. Shuh, T. D. Durbin and J. A. Yarmo, Surface Science 277, 43 (1992).

    Article  Google Scholar 

  9. A. P. Gree, C. W. Louw and H. C. Swart, Corrosion Science 42, 1725 (2000).

    Article  Google Scholar 

  10. W. T. Geng, Physical Review B 68, 233402 (2003).

    Article  Google Scholar 

  11. L. Pramatarova, E. Pecheva, V. Krastev and F. Riesz, Journal of Materials Science: Materials in Medicine 18, 435 (2007).

    Google Scholar 

  12. P. Jussila, K. Lahtonen, M. Lampimäki, M. Hirsimäki and M. Valden, Surface and Interface Analysis 40, 1149 (2008).

    Article  Google Scholar 

  13. P. Jussila, H. Ali-Löytty, K. Lahtonen, M. Hirsimäki and M. Valden, Surface Science 603, 3005 (2009).

    Article  Google Scholar 

  14. A. C. S. Sabioni, A. M. Huntz, J. Philibert, B. Lesage and C. Monty, Journal of Materials Science 27, 4782 (1992).

    Article  Google Scholar 

  15. K. P. Lillerud and P. Kofstad, Journal of the Electrochemical Society 127, 2397 (1980).

    Article  Google Scholar 

  16. K. P. Lillerud and P. Kofstad, Oxidation of Metals 17, 127 (1982).

    Article  Google Scholar 

  17. M.Y. Su, and G. Simkovitch, Technical report of the Applied Research Laboratory of the Pennsylvania State University (1987).

  18. C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).

    Article  Google Scholar 

  19. N. Cabrera and N. F. Mott, Reports on Progress in Physics 12, 163 (1949).

    Article  Google Scholar 

  20. D. D. Eley and P. R. Wilkinson, Proceedings of the Royal Society of London A 254, 327 (1960).

    Article  Google Scholar 

  21. F. P. Fehlner and N. F. Mott, Oxidation of Metals 2, 59 (1970).

    Article  Google Scholar 

  22. C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).

    Article  Google Scholar 

  23. A. Mazenc, A. Galtayries, A. Seyeux, P. Marcus and S. Leclercq, Surface and Interface Analysis 45, 583 (2013).

    Article  Google Scholar 

  24. A. Mazenc. Ph.D. thesis, Université Pierre et Marie Curie (2013).

  25. P. Kofstad, Oxidation of Metals 44, 3 (1995).

    Article  Google Scholar 

  26. J. H. Park, W. E. King and S. J. Rothman, Journal of the American Ceramic Society 70, 880 (1987).

    Article  Google Scholar 

  27. A. C. S. Sabioni, E. A. Malheiros, V. Ji, F. Jomard, W. A. de Almeida Macedo and P. Gastelois, Oxidation of Metals 81, 407 (2014).

    Article  Google Scholar 

  28. S. C. York, M. W. Abee and D. F. Cox, Surface Science 437, 386 (1999).

    Article  Google Scholar 

  29. C. Pereira-Nabais, J. Swiatowska, M. Rosso, F. Ozanam, A. Seyeux, A. Gohier, P. Tran-Van, M. Cassir and P. Marcus, ACS Applied Materials and Interfaces 6, 13023 (2014).

    Article  Google Scholar 

  30. P. Lu and S. J. Harris, Electrochemistry Communications 13, 1035 (2011).

    Article  Google Scholar 

  31. S. Shi, P. Lu, Z. Liu, Y. Qi, L. G. Hector, H. Li and S. J. Harris, Journal of the American Chemical Society 134, 15476 (2012).

    Article  Google Scholar 

  32. G. K. Boreskov, Advances in Catalysis 15, 285 (1965).

    Google Scholar 

  33. W. C. Hagel, Journal of the American Ceramic Society 48, 70 (1965).

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports by EDF R&D and by Région Ile-de-France are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Marcus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poulain, C., Seyeux, A., Voyshnis, S. et al. Volatilization and Transport Mechanisms During Cr Oxidation at 300 °C Studied In Situ by ToF-SIMS. Oxid Met 88, 423–433 (2017). https://doi.org/10.1007/s11085-017-9756-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9756-y

Keywords

Navigation