Skip to main content
Log in

Long-Term Oxidation Testing and Lifetime Modeling of Cast and ODS FeCrAl Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Long-term cyclic oxidation testing was conducted on oxide dispersion strengthened (ODS) and cast FeCrAlY alloys at 1100 and 1200 °C with 1 or 100 h hold time in air, O2, and humid atmospheres. These data were used to optimize four different cyclic oxidation models and calculate the Al consumption rate due to oxidation. The pkp and COSIM-GSA models were able to reproduce accurately the experimental oxidation curves, and lifetime predictions based on these models were in good agreement with experiments. Microstructure characterization revealed that the degradation of the ODS FeCrAlY cyclic oxidation performance was mainly due to the incorporation of Ti carbonitrides in the alumina scale and the formation of tensile cracks. Controlling the levels of C, N, and S in one ODS alloy resulted in oxidation performance only moderately lower than the performance of cast FeCrAlY alloys. A few, very deep, tensile cracks formed at the cast alloy surface upon thermal cycling. Finally, the effect of specimen mechanical strength and the presence of H2O on ODS FeCrAl durability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. B. K. Kad, S. Dryepondt, A. R. Jones, V. Cedro III, G. J. Tatlock, B. A. Pint, P. F. Tortorelli, and P. A. Rawls, Proceedings of the 8th International Charles Parsons Turbine Conference, Portsmouth (2011).

  2. J. D. Whittenberger, Metallurgical Transactions A 12, 845–851 (1981).

    Article  Google Scholar 

  3. C. L. Chen, P. Wang and G. J. Tatlock, Materials at High Temperatures 26, 299–303 (2009).

    Article  Google Scholar 

  4. I. Gurrappa, S. Weinbruch, D. Naumenko and W. J. Quadakkers, Materials and Corrosion 51, 224–235 (2000).

    Article  Google Scholar 

  5. W. J. Quadakkers and K. Bongartz, Materials and Corrosion 45, 232–241 (1994).

    Article  Google Scholar 

  6. H. Al-badairy, G. J. Tatlock and M. J. Bennett, Materials at High Temperatures 17, 101–107 (2000).

    Article  Google Scholar 

  7. B. A. Pint, L. R. Walker and I. G. Wright, Materials at High Temperatures 21, 175–185 (2004).

    Article  Google Scholar 

  8. M. J. Bennett, R. Perkins, J. B. Price, F. Starr, Proceedings of the 10th Conference on Materials for Advanced Power Engineering, eds. D. Coutsouradis et al., Vol. 1553 (Kluwer Academic Publishers, Liege, October 1994).

  9. M. J. Bennett, Solid State Phenomena 41, 235–252 (1995).

    Article  Google Scholar 

  10. C. E. Lowell, C. A. Barrett, R. W. Palmer, J. V. Auping and H. B. Probst, Oxidation of Metals 36, 81–112 (1991).

    Article  Google Scholar 

  11. I. G. Wright, B. A. Pint, L. M. Hall and P. F. Tortorelli, in Lifetime Modelling of High Temperature Corrosion Processes, eds. M. Schütze, W. J. Quadakkers and J. R. Nicholls, Vol. 34 (Maney Publishing, London, 2001) pp. 338–358.

  12. J. R. Nicholls, R. Newton, M. J. Bennett, H. E. Evans, H. Al-Badairy, G. J. Tatlock, D. Naumenko, W. J. Quaddakkers, G. Strehl, and G. Borchardt., in Lifetime Modelling of High Temperature Corrosion Processes, eds. M. Schütze, W. J. Quadakkers and J. R. Nicholls, Vol. 34, (Maney Publishing, London, 2001), pp. 83–106.

  13. J. L. Smialek, Acta Materialia 51, 469–483 (2003).

    Article  Google Scholar 

  14. D. Poquillon and D. Monceau, Oxidation of Metals 59, 409–431 (2003).

    Article  Google Scholar 

  15. S. Dryepondt and B. A. Pint, NACE Paper C2013-0002646, presented at NACE Corrosion 2013, (Orlando, FL, 2013).

    Google Scholar 

  16. F. H. Stott, F. A. Golightly and G. C. Wood, Corrosion Science 19, 889–906 (1979).

    Article  Google Scholar 

  17. S. Dryepondt, A. Rouaix-Vande Put and B. A. Pint, Oxidation of Metals 79, 627–638 (2013).

    Article  Google Scholar 

  18. B. A. Pint, P. F. Tortorelli and I. G. Wright, Oxidation of Metals 58, 73–101 (2002).

    Article  Google Scholar 

  19. H. Cama, T.A. Hughes, Proceeding of the 10th Conference on Materials for Advanced Power Engineering, eds. D. Coutsouradis et al., Vol. 1553 (Kluwer Academic Publishers, Liege, October 1994).

  20. C. Capdevila, U. Miller, H. Jelenak and H. K. D. H. Bhadeshia, Materials Science and Engineering A 316, 161–165 (2000).

    Article  Google Scholar 

  21. B. A. Pint, Journal of American Ceramic Society 86, 686–695 (2003).

    Article  Google Scholar 

  22. B. Jonsson, R. Berglund, J. Magnusson, P. Henning and M. Hattestrand, Materials Science Forum 461–464, 455–462 (2004).

    Article  Google Scholar 

  23. S. Dryepondt and B. A. Pint, Materials Science and Engineering 497, 224–230 (2008).

    Article  Google Scholar 

  24. C. S. Tedmon, Journal of the electrochemical society 113, 766–768 (1966).

    Article  Google Scholar 

  25. K. A. Terrani, B. A. Pint, C. M. Parish, C. M. Silva, L. L. Snead and Y. Katoh, Journal of the American Ceramic Society 97, 2331–2352 (2014).

    Article  Google Scholar 

  26. B. A. Pint, L. R. Walker and I. G. Wright, Materials at High Temperatures 26, 211–216 (2009).

    Article  Google Scholar 

  27. B. A. Pint, S. Dryepondt and A. Rouaix-Vande, Put and Y. Zhang, JOM 64, 1454–1460 (2012).

    Article  Google Scholar 

  28. E. Wessel, V. Kochubey, D. Naumenko, L. Niewolak, L. Singheiser and W. J. Quadakkers, Scripta Materialia 51, (10), 987–992 (2004).

    Article  Google Scholar 

  29. D. Naumenko, B. Glesson, E. Wessel, L. Singheiser and W. J. Quadakkers, Metallurgical and Materials Transactions A 38, 2974–2982 (2007).

    Article  Google Scholar 

  30. D. J. Young, D. Naumenko, L. Niewolak, E. Wessel, L. Singheiser and W. J. Quadakkers, Materials and Corrosion 61, 838–844 (2010).

    Article  Google Scholar 

  31. J. L. Smialek, N. S., Jobson, B. Gleeson, D.B. Hovis, and A.H. Heuer, NASA technical report, NASA/TM-2013-217855 34 (2013).

  32. W. M. Pragnell and H. E. Evans, Modeling and Simulation in Material Science and Engineering 14, 733–740 (2006).

    Article  Google Scholar 

  33. I. G. Wright, R. Peraldi and B. A. Pint, Materials Science Forum 461, 579–590 (2004).

    Article  Google Scholar 

  34. G. Merceron, R. Molins and J.-L. Strudel, Materials at High Temperatures 17, 149–157 (2000).

    Article  Google Scholar 

  35. I. G. Wright, B. A. Pint, and Z. P. Lu, Proceedings of the 19th Fossil Energy Materials Annual Conference, (Knoxville, TN, 2005).

  36. W. J. Quadakkers, D. Naumenko, L. Singheiser, H. J. Penkalla, A. K. Tyagi and A. Czyrska-Filemonowicz, Materials and Corrosion 51, 350–357 (2000).

    Article  Google Scholar 

  37. J. L. Smialek and B. K. Tubbs, Metallurgical and Materials Transactions A 26, 427–435 (1995).

    Article  Google Scholar 

  38. J. L. Smialek and B. A. Pint, Materials Science Forum 369–372, 459–466 (2001).

    Article  Google Scholar 

  39. B. A. Pint, Oxidation of. Metals. 45, 1–37 (1996).

    Article  Google Scholar 

  40. D. Naumenko, B. A. Pint and W. J. Quadakkers, Oxidation of Metals 86, 1–43 (2016).

    Article  Google Scholar 

  41. H. E. Evans and M. P. Taylor, Surface and Coatings Technology 94–95, 27–33 (1997).

    Article  Google Scholar 

  42. W. J. Quadakkers, D. Clemens and M. J. Bennett, in Microscopy of Oxidation 3, eds. S. B. Newcomb and J. A. Little, Vol. 1 (Institute of Metals, London, 1997), pp. 195–206.

  43. D. Naumenko, V. Kochubey, L. Niewolak, A. Dymiati, J. Mayer, L. Singheiser and W. J. Quaddakers, Journal of Material. Science 43, 4550–4560 (2008).

    Google Scholar 

  44. V. K. Tolpygo and D. R. Clarke, Surface and Coatings Technology 120, 1–7 (1999).

    Article  Google Scholar 

  45. V. K. Tolpygo and D. R. Clarke, Acta Materialia 13, 3589–3605 (1999).

    Article  Google Scholar 

  46. M. C. Maris-Sida, G. H. Meier and F. S. Pettit, Metallurgical and Materials Transactions A 34, 2609 (2003).

    Article  Google Scholar 

  47. R. Janakiraman, G. H. Meier and F. S. Pettit, Metallurgical and Materials Transactions A 30, 2905 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks G. Garner, M Stephens, and T. Lowe for their help with the oxidation testing. They also would like to thank P. Tortorelli and K Terrani for reviewing the manuscript and I. G. Wright who helped guide this research for many years. This research was sponsored by the U.S. Department of Energy, Fossil Energy Crosscutting Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Dryepondt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dryepondt, S., Turan, J., Leonard, D. et al. Long-Term Oxidation Testing and Lifetime Modeling of Cast and ODS FeCrAl Alloys. Oxid Met 87, 215–248 (2017). https://doi.org/10.1007/s11085-016-9668-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9668-2

Keywords

Navigation