Skip to main content
Log in

Development of a Comprehensive Oxide Scale Failure Diagram

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper describes a new approach towards the development of a comprehensive oxide scale failure diagram (OSFD) that delineates the mechanical limits of scales for the different types of failure mechanisms. While former diagrams of a similar type were based on relating the critical strain to scale failure to oxide scale thickness, the new approach replaces scale thickness with a comprehensive operational parameter ωo that summarizes in a multi-level treatment all contributing factors, e.g. physical defect size, interface roughness, scale thickness, Young’s modulus, fracture toughness, etc., that influence failure strain. While this approach should ideally be based on a comprehensive treatment of ωo using fully implemented coding, further considerations based on the identification of “low-impact” and “high-impact” parameters lead to a simplified OSFD where only the physical defect size is needed. This simplified approach can be used to assess the strain tolerance of oxide scales in industrial operation once the particular diagram has been established from laboratory data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London, 1988).

    Google Scholar 

  2. Thermo-Calc, Thermo-Calc Software Inc., Stockholm Technology Park, Stockholm (Sweden). www.thermocalc.com

  3. ChemSage Program, Version 4.22 (GTT-Technologies, Herzogenrath, Germany). http://gttserv.lth.rwth-aachen.de/∼cg/

  4. J. Armitt, R. Holmes, M. I. Manning, D. B. Meadowcroft, and E. Metcalfe, The Spalling of Steam-Grown Oxide from Superheater and Reheater Tube Steels. EPRI report FP-686 (Electric Power Research Institute, Palo Alto, 1978).

  5. H. E. Evans, G. P. Mitchell, R. C. Lobb, and D. R. J. Owen, Proceedings of the Royal Society of London A 440, 1 (1993).

    Google Scholar 

  6. M. Schütze, Protective Oxide Scales and Their Breakdown (Wiley, Chichester, 1997).

  7. J. Robertson and M. I. Manning, Materials Science and Technology 6, 81 (1990).

    Google Scholar 

  8. S. R. J. Saunders and R. B. Dooley, Materials at High Temperatures 22, 1 (2005).

  9. Special Issue “Mechanical Properties of Protective Oxide Scales”, Materials at High Temperature 12 (1994).

  10. M. Schütze, S. Ito, W. Przybilla, H. Echsler, and C. Bruns, Materials at High Temperature 18, 39 (2001).

    Article  Google Scholar 

  11. Special Issue of the EPRI Workshop on “Scale Growth and Exfoliation in Steam Plant”, National Physical Laboratory, Teddington/UK, 3–5 September 2003, Materials at High Temperature 22 (2005).

  12. U.R. Evans, An Introduction to Metallic Corrosion (Arnold Publ., London 1948).

  13. P. Hancock, in Proc. TMS-AIME Fall Meeting, ed. J. V. Cathcart (TMS-AIME, New York 1974), p. 155.

  14. H. E. Evans, Materials at High Temperature 22, 219 (2005).

    Google Scholar 

  15. J. W. Quadakkers, P. J. Ennis, J. Zurek, and M. Michalik, Materials at High Temperatures 22, 47 (2005).

    Article  CAS  Google Scholar 

  16. M. Nagl, W. T. Evans, D. J. Hall, and S. R. J. Saunders, Journal de Physique IV 3, 933 (1993).

    CAS  Google Scholar 

  17. M. M. Nagl, S. R. J. Saunders, W. T. Evans, and D. J. Hall, Corrosion Science 35, 965 (1993).

    Article  CAS  Google Scholar 

  18. G. E. Dieter, Mechanical Metallurgy (McGraw-Hill, Kogakusha, Japan, 1976).

  19. P. Hancock and J. R. Nicholls, Materials at High Temperature 12, 209 (1994).

  20. W. Christl, A. Rahmel, and M. Schütze, Óxidation of Metals 31, 35 (1989).

  21. M. Schütze, in High Temperature Corrosion of Advanced Materials and Protective Coatings, eds. Y. Saito et al. (North Holland Publ., Amsterdam, 1992), p. 29.

  22. Y. Zhang and D. A. Shores, Oxidation of Metals 40, 529 (1993).

  23. M. Schütze, M. Malessa, D. Renusch, P. F. Tortorelli, I. G. Wright, and R. B. Dooley, Materials Science Forum 522–523, 393 (2006).

    Article  Google Scholar 

  24. E. Metcalfe and M. I. Manning, The Spalling of Steam Grown Oxide from Austenitic and Ferritic Alloys. CERL Report RD/L/R/1966 (Central Electricity Generating Board, Leatherhead, 1977).

  25. W. Przybilla and M. Schütze, Oxidation of Metals 58, 103 (2002).

    Article  CAS  Google Scholar 

  26. M. I. Manning, Corrosion Science 21, 301 (1981).

    Google Scholar 

  27. W. Christl, A. Rahmel, and M. Schütze, Oxidation of Metals 31, 1 (1989).

    Article  CAS  Google Scholar 

  28. J. R. Nicholls, D. J. Hall, and P. F. Tortorelli, Materials at High Temperature 12, 141 (1994).

    CAS  Google Scholar 

  29. H. Echsler, D. Renusch, and M. Schütze, Materials Science and Technology 20, 307 (2004).

    Article  CAS  Google Scholar 

  30. M. Schütze and W. J. Quadakkers (eds.) Cyclic Oxidation of High Temperature Materials (IOM Communications, London, 1999).

  31. D. Bruce and P. Hancock, Journal of the Institute of Metals 97, 140 (1969).

    CAS  Google Scholar 

  32. M. S. Doraiswami, Proceedings of the Indian Academic Society 25, 413 (1947).

  33. A. S. Saban, I. G. Wright, and T. R. Watkins, Estimation of Thermal Strains Developed During Oxide Growth, EPRI-Interim Report 3-07 (Oak Ridge National Laboratory, 2007).

  34. H. J. Frost and M. F. Ashby, Deformation Mechanism Maps (Pergamon Press, Oxford, 1982).

  35. R. Herzog, P. Majerus, E. Trunova, H. Echsler, R. W. Steinbrech, W. J. Quadakkers, F. Schubert, L. Singheiser, and M. Schütze, Plasma Sprayed Thermal Barrier Coatings for Gas Turbine Components—Degradation Parameters and Modelling Approach, Proc. 2nd Int. Symp Integral Materials Modelling, Journal of Modelling and Simulation in Materials Science and Engineering (2002).

  36. F. Gesmundo and P. Y. Hou, Oxidation of Metals 59, 63 (2003).

    Article  CAS  Google Scholar 

  37. M. Schmitz-Niederau and M. Schütze, Oxidation of Metals 52, 241 (1999).

    Article  CAS  Google Scholar 

  38. C. Bruns and M. Schütze, Oxidation of Metals 55, 35 (2001).

    Article  CAS  Google Scholar 

  39. P. Hancock and J. R. Nicholls, Materials Science and Technology 4, 398 (1988).

    CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by EPRI, Palo Alto, in the Program on Technology Innovation: Oxide Growth and Exfoliation on Alloys Exposed to Steam as part of project no. 1013666 which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schütze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütze, M., Tortorelli, P.F. & Wright, I.G. Development of a Comprehensive Oxide Scale Failure Diagram. Oxid Met 73, 389–418 (2010). https://doi.org/10.1007/s11085-009-9185-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9185-7

Keywords

Navigation