Skip to main content
Log in

Evaluation of the Mechanical Properties of Naturally Grown Multilayered Oxides Formed on HCM12A Using Small Scale Mechanical Testing

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The microstructure and mechanical integrity of protective multilayered oxide films grown in liquid metal on F/M steel HCM12A was investigated utilizing Raman spectroscopy, nanoindentation and micro-cantilever testing methods. The Raman spectra showed a Fe3O4 outer layer and a Cr-rich spinel structure inner layer. The nanoindentation results showed a higher hardness value for the inner layer than for the outer layer. In addition, the hardness of the diffusion layer in between the inner layer and the bulk steel was measured. Quantitative fracture properties were obtained of the steel/oxide interface and within the oxide layers utilizing micro-cantilever testing. Furthermore the strength and elastic properties of the multilayered oxide film were measured and it was found that the porous structure in the inner Fe–Cr oxide limits the integrity of the steel/oxide interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Zhang and N. Li, Corrosion Science 49, 2007 (4154).

    Article  Google Scholar 

  2. J. Zhang and N. Li, Journal of Nuclear Materials 373, 2008 (351).

    Article  Google Scholar 

  3. D. Frazer, E. Stergar, C. Cionea and P. Hosemann, Energy Procedia 49, 2014 (627).

    Article  Google Scholar 

  4. V. Tsisar, C. Schroer, O. Wedemeyer, A. Skrypnik and J. Konys, Journal of Nuclear Materials 454, 2014 (332).

    Article  Google Scholar 

  5. L. Martinell, F. Ballbaud-Celerier and A. Teriain, Corrosion Science 50, 2008 (2549).

    Article  Google Scholar 

  6. P. Hosemann, R. Dickerson, P. Dickerson, N. Li and S. A. Maloy, Corrosion Science 66, 2013 (196).

    Article  Google Scholar 

  7. P. Hosemann, C. Hofer, G. Hlawacek, N. Li, S. A. Maloy and C. Teichert, Journal of Nuclear Materials 421, 2012 (140).

    Article  Google Scholar 

  8. J. Zhang, P. Hosemann and S. A. Maloy, Journal of Nuclear Materials 404, 2010 (82).

    Article  Google Scholar 

  9. J. Zhang, N. Li and Y. Chen, Journal of Nuclear Materials 342, 2005 (1).

    Article  Google Scholar 

  10. F. J. Martin, L. Soler, F. Hernandez and D. Gomez-Briceno, Journal of Nuclear Materials 335, 2004 (194).

    Article  Google Scholar 

  11. V. Shankar, J. Rao and I. Lim, Soon Hwang, L.K. Singhal. Corrosion Science 63, 2012 (113).

    Article  Google Scholar 

  12. E. Yamaki, K. Ginestar and L. Martinelli, Corrosion Science 53, 2011 (3075).

    Article  Google Scholar 

  13. C. Schroer, A. Skrypnik, O. Wedemeyer and J. Konys, Corrosion Science 61, 2012 (63).

    Article  Google Scholar 

  14. D. Di Maio and S. G. Roberts, Journal of Materials Research 20, 2005 (299).

    Article  Google Scholar 

  15. C. Kapsalis, G. Schmitt, R.Feser, B. Sagebiel, S. Wilmes, M. Macziek, New Investigations on Critical Wall Shear Stresses of CuNi Alloys in Natural and Artificial Seawater. EUROCORR (Stockholm 11).

  16. G. Schmitt and M. Bakalli, in Shreir’s Corrosion, vol. 2, 4th ed, eds. J. Richardson, et al. (Elsevier, Amsterdam, 2010), pp. 954–987.

    Chapter  Google Scholar 

  17. G. Schmitt and M. Bakalli, Power Plant Chemistry 9, 2007 (89).

    Google Scholar 

  18. G. Schmitt and M. Bakalli, Materials and Corrosion 59, 2008 (181).

    Article  Google Scholar 

  19. J. Bischoff and A. T. Motta, Journal of Nuclear Materials 424, 2012 (261).

    Article  Google Scholar 

  20. J. Bischoff and A. T. Motta, Journal of Nuclear Materials 430, 2012 (171).

    Article  Google Scholar 

  21. L. Tan, M. T. Machut, K. Sridharan and T. R. Allen, Journal of Nuclear Materials 371, 2007 (161).

    Article  Google Scholar 

  22. P. Ampornrat and G. S. Was, Journal of Nuclear Materials 371, 2007 (1).

    Article  Google Scholar 

  23. C. Forsberg, Progress in Nuclear Energy 47, 2005 (32).

    Article  Google Scholar 

  24. T. Mizuno and H. Niwa, Nuclear Technology 146, 2004 (155).

    Google Scholar 

  25. L. Brissonneau, F. Beauchamp, O. Morier, C. Schroer, J. Konys, A. Kobzova, F. Di Gabriele and J.-L. Courouau, Journal of Nuclear Materials 415, 2011 (348).

    Article  Google Scholar 

  26. J. S. Zhang and N. Li, Nuclear Technology 144, 2003 (379).

    Google Scholar 

  27. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard and G. Santarini, Corrosion Science 50, 2008 (2537).

    Article  Google Scholar 

  28. L. Martinelli, F. Balbaud-Célérier, G. Santarini, G. Moulin, J. Favergeon, A. Terlain, M. Tabarant, S. Delpech and G. Picard, Corrosion Science 50, 2008 (2523).

    Article  Google Scholar 

  29. G. Müller, G. Schumacher and F. Zimmermann, Journal of Nuclear Materials 278, 2000 (85).

    Article  Google Scholar 

  30. P. Hosemann, M. Hawly, D. Koury, J. G. Swadener, J. Welch, A. L. Johnson, G. Mori and N. Li, Journal of Nuclear Materials 375, 2008 (323).

    Article  Google Scholar 

  31. E. Yamaki and K. Kikuchi, Journal of Nuclear Materials 398, 2010 (153).

    Article  Google Scholar 

  32. K. Kikuchi, A. K. Rivai, S. Saito, A. M. Bolind and A. Kogure, Journal of Nuclear Materials 431, 2012 (120).

    Article  Google Scholar 

  33. K. Kikuchi, N. Okada, M. Kato, H. Uchida and S. Saito, Journal of Nuclear Materials 450, 2014 (237).

    Article  Google Scholar 

  34. M. Schütze, P. F. Tortorelli and I. G. Wright, Oxidation of Metals 73, 2010 (398).

    Article  Google Scholar 

  35. J. Armitt, D. R. Holmes, M. I. Manning, D. B. Meadowcroft, and E. Metcalfe, The Spalling of Steam Grown Oxide from Superheater and Reheater Tube Steels, EPRI Report No. FP 686 (1978).

  36. P. L. Harrison, Corrosion Science 7, 1967 (789).

    Article  Google Scholar 

  37. M. Nagl, W. Evans, D. Hall and S. Saunders, Journal de Physique IV 3, 1993 (933).

    Article  Google Scholar 

  38. J. Robertson and M. I. Manning, Materials Science and Technology 6, 1990 (81).

    Article  Google Scholar 

  39. X. Zhao, R. M. Langford, J. Tan and P. Xiao, Scripta Materialia 59, 2008 (39).

    Article  Google Scholar 

  40. D. E. J. Armstrong, M. E. Rogers and S. G. Roberts, Scripta Materialia 61, 2009 (741).

    Article  Google Scholar 

  41. B. L. Boyce, J. R. Michael and P. G. Kotula, Acta Materialia 52, 2004 (1609).

    Article  Google Scholar 

  42. Y. Yang, H. H. Ruan, J. Lu, N. Yao, W. L. Shan and W. O. Soboyejo, Experimental Mechanics 49, 2009 (731).

    Article  Google Scholar 

  43. D.E.J. Armstrong. PFMC/FEMaS Conference Proceedings (2011).

  44. P. Hosemann, J. G. Swadener, J. Welch and N. Li, Journal of Nuclear Materials 377, 2008 (201).

    Article  Google Scholar 

  45. Y. Zhao, H. Dai and W. Jin, Corrosion Science 65, 2012 (163).

    Article  Google Scholar 

  46. W. C. Oliver and G. M. Pharr, Journal of Materials Research 7, 1992 (1564).

    Article  Google Scholar 

  47. K. F. McCarty and D. R. Boehme, Journal of Solid State Chemistry 79, 1989 (19).

    Article  Google Scholar 

  48. G. Hilson, K. R. Hallam and P. E. J. Flewitt, Mat. Sci. Forum 524–525, 2006 (957).

    Article  Google Scholar 

  49. J. Mougin, N. Rosman, G. Lucazeau and A. Galerie, Journal of Raman Spectroscopy 32, 2001 (739).

    Article  Google Scholar 

  50. B.D. Hosterman, Raman spectroscopic study of solid solution spinel oxides, PhD thesis, University of Nevada, Las Vegas, 2011.

  51. J. Kim, K. J. Choi, C. B. Bahn and J. H. Kim, Journal of Nuclear Materials 449, 2014 (181).

    Article  Google Scholar 

  52. D. Chicot, J. Mendoza, A. Zaoui, G. Louis, V. Lepingle, F. Roudet and J. Lesage, Materials Chemistry and Physics 129, 2011 (862).

    Article  Google Scholar 

  53. A. M. Jubb and H. C. Allen, ACS Applied Materials and Interfaces 2, 2010 (2804).

    Article  Google Scholar 

  54. O. N. Shebanova and P. Lazor, Journal of Raman Spectroscopy 34, 2003 (845).

    Article  Google Scholar 

  55. L. V. Gasparov, D. B. Tanner, D. B. Romero, H. Berger, G. Margaritondo and L. Forro, Physical Review B 62, 2000 (7939).

    Article  Google Scholar 

  56. T. Miyazawa, S. Uchida, T. Satoh, Y. Morishima, T. Hirose, Y. Satoh, K. IInuma, Y. Wada, H. Hosokawa and N. Usui, Journal of Nuclear Science and Technology 42, 2005 (233).

    Article  Google Scholar 

  57. M. Proy, M. V. Utrilla, E. Otero, B. Bouchaud and F. Pedraza, Journal of Materials Engineering and Performance 23, 2014 (2847).

    Article  Google Scholar 

  58. A. Yogi and D. Varshney, Journal of Advanced Ceramics 2, 2013 (360).

    Article  Google Scholar 

  59. I. Chamritski and G. Burns, Journal of Physical Chemistry B 109, 2005 (4965).

    Article  Google Scholar 

  60. D. Lenaz and V. Lughi, Physics and Chemistry of Minerals 40, 2013 (491).

    Article  Google Scholar 

  61. K. R. Elder, K. Thornton and J. J. Hoyt, Philosophical Magazine 91, 2011 (151).

    Article  Google Scholar 

  62. D. E. J. Armstrong, A. S. M. A. Haseeb, S. G. Roberts, A. J. Wilkinson and K. Bade, Thin Solid Films 520, 2012 (4369).

    Article  Google Scholar 

  63. D. Jauffres, X. Liu and C. L. Martin, Procedia Engineering 10, 2011 (2719).

    Article  Google Scholar 

  64. M. G. Mueller, V. Pejchal, G. Žagar, A. Singh and M. Cantoni, Acta Materialia 86, 2015 (385).

    Article  Google Scholar 

  65. D. Frazer, M. D. Abad, D. Krumwiede, C. Back, K. Hesham and P. Hosemann, Composites: Part A 70, 2015 (93).

    Article  Google Scholar 

Download references

Acknowledgments

The Authors thank the NRC faculty development grant NRC-38-09-948 for providing funding for this work. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005941 as well as the nuclear energy university program (NEUP). The authors would also like to thank Biomolecular Nanotechnology Center (BNC) at UC Berkeley for the use for the SEM/FIB facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Parker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abad, M.D., Parker, S., Frazer, D. et al. Evaluation of the Mechanical Properties of Naturally Grown Multilayered Oxides Formed on HCM12A Using Small Scale Mechanical Testing. Oxid Met 84, 211–231 (2015). https://doi.org/10.1007/s11085-015-9551-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9551-6

Keywords

Navigation