Skip to main content
Log in

Electrochemical determination of gibbs energy of formation of NiTiO3 (ilmenite)

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Gibbs energy of formation of NiTiO3 (ilmenite) relative to its component oxides, NiO (rock salt) and TiO2 (rutile), has been measured employing the solid-state electrochemical cell,

$$( - )Pt,Ni + TiO_2 + NiTiO_3 //(Y_2 O_3 )ZrO_2 //Ni + NiO,Pt( + )$$

. between 994 and 1371 K. The open-circuit electromotive force (emf) of the preceding solid-state galvanic cell was found to be reversible and to vary linearly as a function of temperature in the range of measurement. The results obtained in this study give for the reaction

$$\begin{gathered} NiO(rs) + TiO_2 (rut) \to NiTiO_3 (ilm) \hfill \\ \Delta G^ \circ = - 11,058 + 2.895T( \pm 100)J mol^{ - 1} \hfill \\ \end{gathered} $$

. Combining the Gibbs energy of formation of NiTiO3 (ilm) from the component oxides with that for the formation of NiO (rs) from its elements gives for the reaction

$$\begin{gathered} Ni(s) + TiO_2 (rut) + 1/2O_2 (g) \to NiTiO_3 (ilm) \hfill \\ \Delta G^ \circ = - 246,442 + 88.78T( \pm 150)J mol^{ - 1} \hfill \\ \end{gathered} $$

. Differential thermal analysis (DTA) of NiTiO3 (ilm) between 373 and 1623 K indicated that NiTiO3 (ilm) undergoes a reversible order-disorder phase transformation between 1540 and 1594 K. Based on the ideal mixing of cations on the cationic sublattice of NiTiO3 (ilm) and a critical phase transformation of 1568 K obtained from the DTA, the Gibbs energy change for the order-disorder phase transformation in NiTiO3 (ilm) is obtained as

$$\Delta G_{Tr}^ \circ = 18,073 - 11.526T( \pm 1000) J mol^{ - 1} $$

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Armbruster: J. Solid State Chem., 1981, vol. 36, pp. 275–88.

    Article  CAS  Google Scholar 

  2. A. Muan: J. Am. Ceram. Soc., 1992, vol. 75 (6), pp. 1357–60.

    Article  CAS  Google Scholar 

  3. G. Sankar, C.N.R. Rao, and T. Rayment: J. Mater. Chem., 1991, vol. 1 (2), pp. 299–300.

    Article  CAS  Google Scholar 

  4. Y. Takita, T. Ishihara, and M. Hashida: J. Chem. Soc.—Chem. Comm., 1990, vol. 18, pp. 1247–48.

    Article  Google Scholar 

  5. J.M. Santamaria, E.E. Miro, and E.E. Wolf: Ind. Eng. Chem. Res., 1991, vol. 30 (6), pp. 1157–65.

    Article  CAS  Google Scholar 

  6. S. Damyanova, A. Spojakina, and K. Jiratova: Appl. Catalysis A-General, 1995, vol. 125 (2), pp. 257–69.

    Article  CAS  Google Scholar 

  7. T. Arunarkavalli, G.U. Kulkarni, G. Sankar, and C.N.R. Rao: Catalysis Lett., 1993, vol. 17 (1–2), pp. 29–37.

    Article  CAS  Google Scholar 

  8. A. Navrotsky and A. Muan: J. Inorg. Nucl. Chem., 1970, vol. 32, pp. 3471–84.

    Article  CAS  Google Scholar 

  9. L.G. Evans and A. Muan: Thermochim. Acta, 1971, vol. 2, pp. 121–34.

    Article  CAS  Google Scholar 

  10. R.W. Taylor and H. Schmalzried: J. Phys. Chem., 1964, vol. 68 (9), pp. 2444–49.

    CAS  Google Scholar 

  11. G. Chattopadhyay and H. Kleykamp: Z. Metallkd., 1983, vol. 74 (3), pp. 182–87.

    CAS  Google Scholar 

  12. L. Pejryd: Acta Chem. Scand. A, 1984, vol. 38, pp. 247–52.

    Google Scholar 

  13. M. Lerch and W. Laqua: Z. Anorg. Allgem. Chem., 1992, vol. 610, pp. 57–63.

    Article  CAS  Google Scholar 

  14. O. Kubaschewski: High Temp.—High Pressure, 1972, vol. 4, pp. 1–12.

    CAS  Google Scholar 

  15. G.M. Kale and D.J. Fray: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 373–78.

    CAS  Google Scholar 

  16. T.N. Rezukhina: Ph.D. Thesis, Moscow State University, Moscow, 1968.

    Google Scholar 

  17. K.T. Jacob, G.M. Kale, and K.P. Abraham: J. Electrochem. Soc., 1992, vol. 139 (2), pp. 517–20.

    Article  CAS  Google Scholar 

  18. G.M. Kale and K.T. Jacob: Metall. Trans. B, 1992, vol. 23B, pp. 57–64.

    CAS  Google Scholar 

  19. K.T. Jacob and C.B. Alcock: High Temp.—High Pressure, 1975, vol. 7, pp. 433–39.

    CAS  Google Scholar 

  20. R.D. Shannon: Acta Cryst., 1976, vol. 32A, pp. 751–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kale, G.M. Electrochemical determination of gibbs energy of formation of NiTiO3 (ilmenite). Metall Mater Trans B 29, 31–38 (1998). https://doi.org/10.1007/s11663-998-0004-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0004-3

Keywords

Navigation