Skip to main content
Log in

Long-Term Behaviors of Oxide Layer in Liquid Lead–Bismuth Eutectic (LBE), Part I: Model Development and Validation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

For all LBE-cooled systems, the oxygen control technology must be applied for inhibiting corrosion by the liquid metal through formation of protective oxide layers on the structural material surface. The present study focuses on the stability of the protective layer in long-term operations subjected to LBE corrosion. This article, focusing on the modeling development and validation, is the first part of the systematic study. A chemical corrosion model, taking into account the oxide layer removal mechanisms by LBE, is developed. The model is partially validated by available long-term and short-term experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\( a_{\text{i}} \left( {i = Fe, Cr, PbO, O} \right) \) :

Activity in LBE

\( A_{\text{i}} \left( {i = 1,2,3} \right) \) :

Constant

\( c_{\text{Fe,b}} \) :

Fe mass concentration in the bulk flow

\( c_{\text{i,s}} (i = Cr,Fe,O) \) :

Mass concentration of substance i in LBE at the LBE/oxide surface

\( c_{\text{i}}^{\text{s}} \left( {i = Fe,O,Cr} \right) \) :

Solubility of substance i in LBE

d :

Hydraulic diameter

\( D_{\text{Fe}} \) :

Diffusion coefficient of Fe in LBE

\( F_{{{\text{Fe,i}} }} (i = Fe_{3} O_{4} ,Sp, St) \) :

Mass fraction of Fe in species i

\( F_{\text{Cr,i}} (i = Sp,St) \) :

Mass fraction of Cr in species i

\( G_{\text{i}} \left( {i = Sp,Fe_{2} O_{3} ,Fe_{3} O_{4} ,Cr_{2} O_{3} } \right) \) :

Free Gibbs energy of formation of oxide i

\( k_{{{\text{p}}0}} \) :

Oxidation parameter in Eq. 31, constant

\( k_{\text{p}} \) :

Oxidation constant of the steel

\( K_{1} ,K_{2} \) :

Constants in Eq. 6

\( p_{{{\text{O}}_{2} }} \) :

Oxygen partial pressure

Q :

Activation energy of the oxidation constant

R :

Gas constant

T :

Temperature

\( \nabla T \) :

Temperature difference of a non-isothermal loop

\( T_{ \hbox{max} } \) :

Maximum temperature of a non-isothermal loop

L :

Length of a non-isothermal loop

\( M_{\text{i}} \left( {i = O,Cr,Fe} \right) \) :

Atom weight of element i

\( r_{1} \) :

Constant in Eq. 3

\( r_{2} ,r_{3} \) :

Constant in Eq. 13

\( R_{\text{i}} (i = Sp,Fe_{3} O_{4} ) \) :

Scale removal rate of the oxide layer i

\( R_{\text{m}} \) :

Mass transfer rate by the liquid metal flow

Re :

Reynolds number

Sc :

Schmidt number

St :

Steel

Sp :

Spinel oxide

t :

Time

\( t_{0} \) :

Time needed for the magnetite layer removal

\( t_{1} \) :

Time at which the iron mass transfer rate equals to the iron diffusion rate through the spinel layer

x :

One-third of atomic number of Cr in a spinel

\( W_{\text{i,Sp}} (i = O,Fe,Cr) \) :

Mass of species i in unit volume of spinel

V :

Flow velocity

\( \tau_{\text{i}} (i = Fe_{3} O_{4} ,Sp) \) :

Non-dimensional time

\( \eta_{\text{i}} (i = Fe_{3} O_{4} ,{\text{ Sp}}) \) :

Non-dimensional thickness of magnetite layer

\( \rho_{\text{i}} (i = Fe_{3} O_{4} ,Sp,St, LBE) \) :

Theoretical density

\( \delta \) :

Thickness of the oxide layer

\( \delta_{\text{sp}}^{0} \) :

Thickness of the spinel layer at \( t_{0} \)

\( \delta_{\text{sp}}^{1} \) :

Thickness of the spinel layer at \( t_{1} \)

\( \delta_{\text{sp}}^{\text{f}} \) :

Asymptotic thickness of the spinel oxide layer

v :

LBE viscosity

References

  1. P. A. Fomitchenko, Physics of lead reactors, FJSS’98, 1998.

  2. Design of an Actinide Burning, Lead-bismuth cooled reactor that produces low cost electricity, INEEL/EXT-99-00963, Annual Project Status Report, 1999.

  3. N. Li, Progress in Nuclear Energy 50, 140 (2008).

    Article  CAS  Google Scholar 

  4. J. Zhang and N. Li, Oxidation of Metals 63, 353 (2005).

    Article  CAS  Google Scholar 

  5. F. Barbier and A. Rusanov, Journal of Nuclear Materials 296, 231 (2001).

    Article  CAS  Google Scholar 

  6. J. Zhang, N. Li, Y. Chen and A. Rusanov, Journal of Nuclear Materials 336, 1 (2004).

    Article  Google Scholar 

  7. C. Schroer and J. Konys, Journal of Engineering for Gas Turbines and Power 132, 082901 (2010).

    Article  Google Scholar 

  8. C. Schroer, J. Konys, T. Furukawa and K. Aoto, Journal of Nuclear Materials 398, 109 (2010).

    Article  CAS  Google Scholar 

  9. A. Weisenburger, A. Heinzel, G. Müller, H. Muscher and A. Rousanov, Journal of Nuclear materials 376, 274 (2008).

    Article  CAS  Google Scholar 

  10. J. Zhang, P. Hosemann and S. Maloy, Journal of Nuclear Materials 404, 82 (2010).

    Article  CAS  Google Scholar 

  11. C. S. Tedmon Jr, Journal of the Electrochemical Society 113, 766 (1966).

    Article  Google Scholar 

  12. J. Zhang and N. Li, Corrosion Science 49, 4154 (2007).

    Article  CAS  Google Scholar 

  13. M. Machut, Corrosion behavior of steels for lead-alloy cooled fast reactors and the effects of surface modifications on corrosion performance, Thesis. (University of Wisconsin-Madison, Madison, 2007).

  14. H. Steiner, Journal of Nuclear materials 383, 267 (2009).

    Article  CAS  Google Scholar 

  15. J. Zhang, Oxidation of Metals, in press (2013).

  16. J. Robertson, Corrosion Science 32, 443 (1991).

    Article  CAS  Google Scholar 

  17. M. R. Taylor, J. M. Calvert, D. G. Lees and D. B. Meadowcroft, Oxidation of Metals 14, 499 (1980).

    Article  CAS  Google Scholar 

  18. J. Töpfer, S. Aggarwal and R. Dieckmann, Solid State Inonics 81, 251 (1995).

    Article  Google Scholar 

  19. J. Robertson, Corrosion Science 32, 443 (1991).

    Article  CAS  Google Scholar 

  20. F. Barbier, G. Benamati, C. Fazio and A. Rusanov, Journal of Nuclear Materials 295, 149 (2001).

    Article  CAS  Google Scholar 

  21. J. Zhang and N. Li, Journal of Nuclear Materials 373, 351 (2005).

    Article  Google Scholar 

  22. J. Zhang and N. Li, Journal of Nuclear Science and Technology 42, 260 (2004).

    Article  CAS  Google Scholar 

  23. S. Banerjee, in Proceedings of the Fifth International Congress on Metallic Corrosion, Tokyo, Japan, May, 21–27, (1974).

  24. W. M. Robertson, Trans TMS-AIME 242, 21 (1968).

    Google Scholar 

  25. http://www.mrteverett.com/Chemistry/pdictable/pdictable.asp?lang=en.

  26. H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).

    Article  CAS  Google Scholar 

  27. K. T. Jacob and C. B. Alcock, Metallurgical and Materials Transactions B 6, 215 (1975).

    Article  Google Scholar 

  28. A. F. Smith, Corrosion Science 22, 857 (1982).

    Article  CAS  Google Scholar 

  29. I. G. Wright and R. B. Dooley, Institute of Materials 55, 129 (2010).

    CAS  Google Scholar 

  30. J. Zhang, N. Li and Y. Chen, Nuclear Technology 154, 223 (2006).

    CAS  Google Scholar 

  31. J. Zhang, Corrosion Science 51, 1207 (2009).

    Article  CAS  Google Scholar 

  32. J. Zhang and N. Li, Journal of Nuclear Materials 321, 184 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was based on a report (LA-UR-11-04116) which was prepared as an account of work sponsored by the Hyperion Power LLC through a CRADA with LANL. The author is grateful to P. McClure, R. Kapernick, D. Poston and D. Dixon for discussion and good comments. Special thinks go to Dr. Carsten Schroer at Karlsruher Institut fuer Technologie (KIT) for providing long-term experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsuo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J. Long-Term Behaviors of Oxide Layer in Liquid Lead–Bismuth Eutectic (LBE), Part I: Model Development and Validation. Oxid Met 80, 669–685 (2013). https://doi.org/10.1007/s11085-013-9450-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9450-7

Keywords

Navigation