Skip to main content
Log in

An optimized numerical method to pre-researching the performance of solid-phase oxygen control in a non-isothermal lead–bismuth eutectic loop

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In the present work, a new transient calculation method for parameters that can be used to evaluate the ability of oxygen control in a non-isothermal lead–bismuth eutectic (LBE) loop with solid-phase oxygen control was proposed. It incorporates the dissolution process of PbO particles and the oxygen mass transfer process, and an optimized method was used for finding out the optimized oxygen mass transfer coefficient. In numerical terms, three mass transfer models were simultaneously applied, and comparisons of calculated and experimental results from the CRAFT loop indicated that the optimized calculation method and these new oxygen mass transfer models were correct and applicable to other LBE loops. Through this calculation method, we aimed to optimize prediction of the distribution of oxygen and iron concentrations, time taken to establish the steady state of oxygen, and maximum dissolution/precipitation rates of corrosion products and corrosion depth across the entire LBE loop. We hope that this work will provide a potential reference for designing a more intelligent oxygen control system in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Zhang, Lead–bismuth eutectic (LBE): a coolant candidate for Gen. IV advanced nuclear reactor concepts. Adv. Eng. Mater. 16(4), 349–356 (2014). https://doi.org/10.1002/adem.201300296

    Article  ADS  Google Scholar 

  2. P. Hosemann, D. Frazer, M. Fratoni et al., Materials selection for nuclear applications: challenges and opportunities. Scr. Mater. 143, 181–187 (2018). https://doi.org/10.1016/j.scriptamat.2017.04.027

    Article  Google Scholar 

  3. S. Carsten, T. Valentyn, D. Adeline et al., Corrosion in iron and steel T91 caused by flowing lead-bismuth eutectic at 400°C and 10–7 mass% dissolved oxygen. J. Nucl. Eng. Radiat. Sci. 5(1), 011006 (2019). https://doi.org/10.1115/1.4040937

    Article  Google Scholar 

  4. S.J. Tian, Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead–bismuth eutectic at 480°C. Oxid. Met. 93(1–2), 183–194 (2020). https://doi.org/10.1007/s11085-019-09953-7

    Article  Google Scholar 

  5. C. Li, Y.J. Liu, F.F. Zhang et al., Erosion-corrosion of 304N austenitic steels in liquid Pb Bi flow perpendicular to steel surface. Mater Charact. 175, 111054 (2021). https://doi.org/10.1016/j.matchar.2021.111054

    Article  Google Scholar 

  6. C. Li, X.D. Fang, Q.S. Wang et al., A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme lead–bismuth eutectic flow pattern. Corros. Sci. 180, 109214 (2020). https://doi.org/10.1016/j.corsci.2020.109214

    Article  Google Scholar 

  7. J. Zhang, A review of steel corrosion by liquid lead and lead–bismuth. Corros. Sci. 51(6), 1207–1227 (2009). https://doi.org/10.1016/j.corsci.2009.03.013

    Article  Google Scholar 

  8. J. Lim, A. Marino, A. Aerts, Active oxygen control by a PbO mass exchanger in the liquid lead–bismuth eutectic loop: MEXICO. Nucl. Sci. Technol. 54(1), 131–137 (2016). https://doi.org/10.1080/00223131.2016.1202153

    Article  Google Scholar 

  9. P.N. Martynov, R.S. Askhaduuin, A. Simakov et a1. Designing mass exchangers for control of oxygen content in Pb–Bi coolants in various research facilities, in Proceedings of the 17th International Conference on Nuclear Engineering, USA: Brussels, Belgium (2010). https://doi.org/10.1115/ICONE17-75506

  10. F. Niu, R. Candalino, N. Li, Effect of oxygen on fouling behavior in lead–bismuth coolant systems. J. Nucl. Mater. 366(1), 216–222 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.223

    Article  ADS  Google Scholar 

  11. A. Marino, J. Lim, S. Keijers et al., Numerical modeling of oxygen mass transfer from PbO spheres packed bed to liquid lead bismuth eutectic: a venturi-type PbO mass exchanger. Nucl. Eng. Des. 265(12), 576–581 (2013). https://doi.org/10.1016/j.nucengdes.2013.09.018

    Article  Google Scholar 

  12. A. Marino, J. Lim, S. Keijers et al., A mass transfer correlation for packed bed of lead oxide spheres in flowing lead–bismuth eutectic at high Péclet numbers. Int. J. Heat Mass Transf. 80(1), 737–747 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.079

    Article  Google Scholar 

  13. A. Marino, J. Lim, S. Keijers et al., Temperature dependence of dissolution rate of a lead oxide mass exchanger in lead-bismuth eutectic. J. Nucl. Mater. 450(1–3), 270–277 (2014). https://doi.org/10.1016/j.jnucmat.2013.12.023

    Article  Google Scholar 

  14. O. Yeliseyeva, V. Tsisar, Z.J. Zhou et al., Corrosion behavior of Fe–14Cr–2W and Fe–9Cr–2W ODS steels in stagnant liquid Pb with different oxygen concentration at 550 and 650 °C. J. Nucl. Mater. 442, 434–443 (2013). https://doi.org/10.1016/j.jnucmat.2013.07.040

    Article  ADS  Google Scholar 

  15. A. Weisenburger, A. Heinzel, G. Müller et al., T91 cladding tubes with and without modified FeCrAlY coatings exposed in LBE at different flow, stress and temperature conditions. J. Nucl. Mater. 376(3), 274–281 (2008). https://doi.org/10.1016/j.jnucmat.2008.02.026

    Article  ADS  Google Scholar 

  16. Z.X. Gu, Q.X. Zhang, Y. Gu et al., Verification of a self-developed CFD-based multi-physics coupled code MPC–LBE for LBE–cooled reactor. Nucl. Sci. Tech. 32(5), 52 (2021). https://doi.org/10.1007/s41365-021-00887-x

    Article  Google Scholar 

  17. M. Khizer, J.W. Chen, G.W. Yang et al., Seismic and stress qualification of LMFR fuel rod and simple method for the determination of LBE added mass effect. Nucl. Sci. Tech. 31(1), 5 (2020). https://doi.org/10.1007/s41365-019-0721-0

    Article  Google Scholar 

  18. W.W. Qiu, W. Sun, J. Su, Neutronic analysis of deuteron–driven spallation target. Nucl. Sci. Tech. 32(9), 94 (2021). https://doi.org/10.1007/s41365-021-00932-9

    Article  Google Scholar 

  19. J. Zhang, N. Li, Improved application of local models to steel corrosion in lead–bismuth loops. Nucl. Sci. Technol. 144(3), 379–387 (2003). https://doi.org/10.13182/NT03-A3452

    Article  Google Scholar 

  20. H. Xiaoy, N. Li, M. Minee, A kinetic model for corrosion and precipitation in non-isothermal LBE flow loop. J. Nucl. Mater. 297(2), 214–219 (2001). https://doi.org/10.1016/S0022-3115(01)00603-1

    Article  ADS  Google Scholar 

  21. J. Zhang, N. Li, Parametric study of a corrosion model applied to lead–bismuth flow systems. J. Nucl. Mater. 321(2–3), 184–191 (2003). https://doi.org/10.1016/S0022-3115(03)00244-7

    Article  ADS  Google Scholar 

  22. J. Zhang, N. Li, Corrosion/precipitation in non-isothermal and multi-modular LBE loop systems. J. Nucl. Mater. 326(2–3), 201–210 (2004). https://doi.org/10.1016/j.jnucmat.2004.01.013

    Article  ADS  Google Scholar 

  23. L. Martinelli, F. Balbaud-Célérier, G. Picard et al., Oxidation mechanism of a Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy (part III). Corros. Sci. 50(9), 2549–2559 (2008). https://doi.org/10.1016/j.corsci.2008.06.049

    Article  Google Scholar 

  24. F. Balbaud-Célérier, F. Barbier, Investigation of models to predict the corrosion of steels in flowing liquid lead alloys. J. Nucl. Mater. 289(3), 227–242 (2001). https://doi.org/10.1016/S0022-3115(01)00431-7

    Article  ADS  Google Scholar 

  25. V. Tsisar, C. Schroer, O. Wedemeyer et al., Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550°C to flowing Pb–Bi eutectic with 10–7 mass% dissolved oxygen. J. Nucl. Mater. 494, 422–438 (2017). https://doi.org/10.1016/j.jnucmat.2017.07.031

    Article  ADS  Google Scholar 

  26. L. Brissonneau, F. Beauchamp, O. Morier et al., Oxygen control systems and impurity purification in LBE: learning from DEMETRA project. J. Nucl. Mater. 415(3), 348–360 (2011)

    Article  ADS  Google Scholar 

  27. A. Kishimoto, A. Wada, T. Michimoto et al., Solubility and activity of oxygen in Pb–Bi melts. Mater. Trans. 47(1), 122–128 (2006). https://doi.org/10.2320/matertrans.47.122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Xiao-Bo Li, Rui-Xian Liang, Yi-Feng Wang, Hui-Ping Zhu, Fang Liu, Yang Liu, Cong Li, Hao Wu, and Feng-Lei Niu. The first draft of the manuscript was written by Xiao-Bo Li, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Feng-Lei Niu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12027813 and 12105101) and the Fundamental Research Funds for the National key project (No. 2019YFB1901301).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XB., Liang, RX., Wang, YF. et al. An optimized numerical method to pre-researching the performance of solid-phase oxygen control in a non-isothermal lead–bismuth eutectic loop. NUCL SCI TECH 33, 31 (2022). https://doi.org/10.1007/s41365-022-01023-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01023-z

Keywords

Navigation