Skip to main content
Log in

Identification of the Zirconia Phases by Means of Raman Spectroscopy for Specimens Prepared by FIB Lift-Out Technique

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The zirconium–zirconia interface that developed during high-temperature corrosion of pure zirconium was investigated. Samples were oxidized at 600 °C in air at atmospheric pressure. The oxidized sample was then prepared by means of focused ion beam (FIB) lift-out technique and examined using Raman spectroscopy technique in three different oxide zones (external, internal, and close to the metal–oxide interface). Structural investigation was performed using line mode Raman analysis. Implementation of these techniques revealed complexity of the studied system and confirmed the presence of a thin tetragonal sub-layer located in the proximity of the metal. Recorded Raman band displacements of monoclinic and tetragonal phases were interpreted in terms of stoichiometry level and compressive stress in the oxide. The thin layer of tetragonal phase is most likely characterized by lower amount of oxygen than the external part of the oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. J. Zinkle and G. S. Was, Acta Materialia 61, 735 (2013).

    Article  Google Scholar 

  2. L. Kurpaska, J. Favergeon, L. Lahoche, G. Moulin, M. El-Marssi and J.-M. Roelandt, Oxidation of Metals 79, 261 (2013).

    Article  Google Scholar 

  3. L. Kurpaska, J. Favergeon, L. Lahoche, M. El-Marssi, J.-L. Grosseau-Poussard, G. Moulin and J.-M. Roelandt, Journal of Nuclear Materials 466, 460 (2015).

    Article  Google Scholar 

  4. Y. Dali, M. Tupin, P. Bossis, M. Pijolat, Y. Wouters and F. Jomard, Journal of Nuclear Materials 426, 148 (2012).

    Article  Google Scholar 

  5. L. Kurpaska, I. Jozwik and J. Jagielski, Journal of Nuclear Materials 476, 56 (2016).

    Article  Google Scholar 

  6. P. Barberis, T. Merle-Mejean and P. Quintard, Journal of Nuclear Materials 246, 232 (1996).

    Article  Google Scholar 

  7. J. K. Dawson, G. Long, W. E. Seddon and J. F. White, Journal of Nuclear Materials 2, 179 (1968).

    Article  Google Scholar 

  8. P. Kofstad, High Temperature Corrosion, Elsevier—Applied Science Publisher, London, 1988, pp. 1–588.

  9. S. Mrowec, Kinetyka i mechanizm utleniania metali, Wydawnictwo Slask 3, 1982, pp. 1-435.

  10. J. Godlewski, P. Gros, M. Lambertin, J.-F. Wadier and H. Weidinger, Zirconium in the nuclear industry: ninth international symposium, ASTM STP 1132, (ASTM International, West Conshohocken, 1991).

    Google Scholar 

  11. P. Bouvier, J. Godlewski and G. Lucazeau, Journal of Nuclear Materials 300, 118 (2002).

    Article  Google Scholar 

  12. P. Barberis, Journal of Nuclear Materials 226, 34 (1995).

    Article  Google Scholar 

  13. R. C. Garvie, Journal of Physical Chemistry 206–213, 669 (1965).

    Google Scholar 

  14. M. Parise, O. Sicardy and G. Guilletaud, Journal of Nuclear Materials 256, 35 (1998).

    Article  Google Scholar 

  15. D. Fettre, S. Bouvier, J. Favergeon and L. Kurpaska, Applied Surface Science 357, 777 (2015).

    Article  Google Scholar 

  16. L. Kurpaska, J. Favergeon, J.-L. Grosseau-Poussard, L. Lahoche and G. Moulin, Applied Surface Science 385, 106 (2016).

    Article  Google Scholar 

  17. L. Kurpaska, M. Kozanecki, J. J. Jasinski and M. Sitarz, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131, 691 (2014).

    Article  Google Scholar 

  18. L. Kurpaska, M. Lesniak, R. Jadach, M. Sitarz, J. J. Jasinski and J.-L. Grosseau-Poussard, Journal of Molecular Structure 1126, 186 (2016).

    Article  Google Scholar 

  19. X. Iltis, F. Lefebvre and C. Lemaignan, Journal of Nuclear Materials 224, 121 (1995).

    Article  Google Scholar 

  20. L. Kurpaska, Analysis of mechanical stresses in oxide films at high temperatures: application to the Zr/ZrO2 system” PhD thesis, UTC—Compiegne, 2012.

  21. M. Wojdyr, Journal of Applied Crystallography 43, 1126 (2010).

    Article  Google Scholar 

  22. A. Garner, A. Gholinia, P. Frankel, M. Gass, I. MacLaren and M. Preuss, Acta Materialia 80, 159 (2014).

    Article  Google Scholar 

  23. J. Hu, A. Garner, N. Ni, A. Gholina, R. J. Nicholls, S. Lorenzo-Perez, P. Frankel, M. Preuss and Chris R. M. Grovenor, Micron 69, 35 (2015).

    Article  Google Scholar 

  24. P. Bouvier and G. Lucazeau, Journal of Physics and Chemistry of Solids 61, 569 (2000).

    Article  Google Scholar 

  25. B. Panicaud, J.-L. Grosseau-Poussard, D. Retraint, M. Guerain and L. Li, Corrosion Science 68, 263 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from Foundation for Polish Science through the HOMING PLUS/2013-8/7 program is gratefully acknowledged. The authors would like to thank the French embassy in Poland for funding one month internship (L. Kurpaska) at University of La Rochelle in the frame of “SSHN—séjour scientifique de haut niveau” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Kurpaska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurpaska, L., Frelek-Kozak, M., Grosseau-Poussard, JL. et al. Identification of the Zirconia Phases by Means of Raman Spectroscopy for Specimens Prepared by FIB Lift-Out Technique. Oxid Met 88, 521–530 (2017). https://doi.org/10.1007/s11085-016-9675-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9675-3

Keywords

Navigation