Skip to main content
Log in

A Note on a Nonlinear Version of Wagner’s Classical Model of Internal Oxidation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A nonlinear version of Wagner’s classical model of internal oxidation is presented. This version accounts for the fact that precipitates may act as diffusion barriers by introducing a heuristic dependence of the diffusion coefficients of elements upon the local volume fraction of oxides formed. Remarkably, the now nonlinear problem still admits an analytic solution. This solution reveals a sudden and discontinuous transition from internal oxidation to formation of some external oxidized scale, when the fraction of oxide precipitates reaches some critical value which can be calculated explicitly in terms of the respective specific volumes of the matrix and the oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The slight dependence of the former volume upon the dissolved fraction of element A is neglected.

  2. The fact that successive estimates of P and D O are constant in space and time is the key feature that allows for an analytic solution to be found to the nonlinear problem. Of course, it is a consequence of the (often wrong in practice!) assumption made by Wagner that the solubility product of the precipitate is vanishingly small.

  3. It is worth noting incidentally that these qualitative predictions are supported by Brunac et al.’s [1] finite difference simulations of diffusion of O and Al and precipitation of Al2O3 in a Fe matrix, based on the model discussed.

  4. This does not remain true for the critical nominal concentration of the oxidizable element, since the diffusion coefficients enter the relation connecting the two critical quantities.

References

  1. J. B. Brunac, D. Huin, and J. B. Leblond, Oxidation of Metals 73, 565 (2010).

    Article  CAS  Google Scholar 

  2. H. J. Christ, H. G. Sockel, and W. Christl, Werkstoffe und Korrosion 37, 385–390 (1986) (German).

    Google Scholar 

  3. D. L. Douglass, Oxidation of Metals 44, 81 (1995).

    Article  CAS  Google Scholar 

  4. F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 211 (1995).

    Article  CAS  Google Scholar 

  5. F. Gesmundo F and Y Niu, Oxidation of Metals 51, 129 (1999).

    Article  CAS  Google Scholar 

  6. F. Gesmundo, F. Viani, and Y. Niu, Oxidation of Metals 45, 51 (1996).

    Article  CAS  Google Scholar 

  7. F. Gesmundo, F. Viani, and Y. Niu, Oxidation of Metals 47, 355 (1997).

    Article  CAS  Google Scholar 

  8. F. Gesmundo, P. Castello, F. Viani, and C. Roos, Oxidation of Metals 49, 237 (1998).

    Article  CAS  Google Scholar 

  9. D. Huin, V. Lanteri, D. Loison, P. Autesserre, and H. Gaye, in Microscopy of Oxidation—3, eds. S. B. Newcomb and J. A. Little (The Institute of Metals, London, 1997), pp. 573.

    Google Scholar 

  10. J. S. Kirkaldy, Canadian Metallurgical Quarterly 8, 35 (1969).

    CAS  Google Scholar 

  11. J. S. Kirkaldy, in Oxidation of Metals and Alloys, ed. D. L. Douglass (American Society of Metals, Metals Park, 1971), pp. 101.

    Google Scholar 

  12. G. Laflamme and J. E. Morral, Acta Metallurgica 26, 1791 (1978).

    Article  CAS  Google Scholar 

  13. Y. Niu and F. Gesmundo, Oxidation of Metals 56, 517 (2001).

    Article  CAS  Google Scholar 

  14. E. K. Ohriner and J. E. Morral, Scripta Metallurgica 13, 7 (1979).

    Article  CAS  Google Scholar 

  15. R. A. Rapp, Acta Metallurgica 9, 730 (1961).

    Article  CAS  Google Scholar 

  16. R. A. Rapp, Corrosion 21, 382 (1965).

    CAS  Google Scholar 

  17. F. H. Stott and G. C. Wood, Materials Science and Technology 4, 1072 (1988).

    CAS  Google Scholar 

  18. C. Wagner, Zeitschrift für Elektrochemie 63, 772–782 (1959) (German).

    Google Scholar 

  19. D. P. Whittle, F. Gesmundo, B. D. Bastow, and G. C. Wood, Oxidation of Metals 16, 159 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Leblond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leblond, JB. A Note on a Nonlinear Version of Wagner’s Classical Model of Internal Oxidation. Oxid Met 75, 93–101 (2011). https://doi.org/10.1007/s11085-010-9222-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9222-6

Keywords

Navigation