Skip to main content
Log in

Comparative Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A high temperature shape memory alloy, Ni–30Pt–50Ti (at.%), with an M s near 600 °C, was isothermally oxidized in air for 100 h over the temperature range of 500–900 °C. Nearly parabolic kinetics were observed in log–log and parabolic plots, with no indication of initial fast transient oxidation. On average the rates were about a factor of 4 lower than values measured here for a binary Ni–49Ti commercial SMA. The overall behavior could be best described by the Arrhenius relationships:

$${\text{Ni}}{\text{Pt}}{\text{Ti}}{:}\,k_{\text{p}} = 1.54 \times 10^{12} \exp \left[(- 250\,{\text{kJ}}/{\text{mol}}) {RT} \right]{\text{mg}}^{2}/{\text{cm}}^{4} {\text{h}} $$
$${\text{Ni}}{\text{Ti}}{:}\,k_{\text{p}} = 6.39 \times 10^{12} \exp \left[(- 249\,{\text{kJ}}/{\text{mol}}) {RT} \right]{\text{mg}}^{2}/{\text{cm}}^{4} {\text{h}} $$

The activation energy was consistent with literature values for TiO2 scale growth measured for elemental Ti and some NiTi alloys, at ~210–260 kJ/mol. However, a number of other studies produced activation energies in the range of 135–150 kJ/mol. This divergence may be related to various complex scale layers and depletion zones, however, no specific correlation can be identified at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. M. Wayman and K. Shimizu, Metal Science Journal 6, 175 (1972).

    Google Scholar 

  2. K. Otsuka and C. M. Wayman, in Shape Memory Materials, eds. K. Otsuka and C.M. Wayman (Cambridge University Press, Cambridge, U.K., 1998).

  3. R. D. Noebe, T. Biles, and S. A. Padula, in Advanced Structural Materials: Properties, Design Optimization, and Applications, ed. W. O. Soboyejo (Taylor & Francis Group, Boca Raton, FL, 2006), p. 141.

    Google Scholar 

  4. P. G. Lindquist and C. M. Wayman, in Engineering Aspects of Shape-Memory Alloys, eds. T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman (Butterworth-Heinemann, London, 1990), p. 58.

  5. O. Rios, R. Noebe, T. Biles, A. Garg, A. Palczer, D. Scheiman, H. J. Seifert, and M. Kaufman, in Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, Vol. 5761 (SPIE Conf. Proc. 2005), p. 376.

  6. J. A. DeCastro, K. J. Melcher, and R. D. Noebe, in Proceedings of the 41st Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, Paper AIAA–2005–3988 (2005).

  7. R. Noebe, D. Gaydosh, S. Padula, A. Garg, T. Biles, and M. Nathal, in Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, Vol. 5761 (SPIE Conf. Proc. 2005), p. 364.

  8. R. Noebe, S. Draper, D. Gaydosh, A. Garg, B. Lerch. N. Penney, G. Bigelow, S. Padula, and J. Brown, in SMST 2006: Proceedings of the International Conference on Shape Memory and Superelastic Technologies (ASM International, Metals Park, OH, 2008), p. 409.

  9. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London, 1988), pp. 212, 293.

  10. T. Satow, T. Isano, and T. Honma, Journal of the Japan Institute of Metals 38, 242 (1974).

    Google Scholar 

  11. C. M. Chan, S. Trigwell, and T. W. Duerig, Surface and Interface Analysis 5, 349 (1990).

    Google Scholar 

  12. C. L. Chu, S. K. Wu, and Y. C. Yen, Materials Science and Engineering A 216, 193 (1996).

    Google Scholar 

  13. G. S. Firstov, et al., Biomaterials 23, 4863 (2002).

  14. L. Zhu, J. M. Fino, and A. Pelton, in SMST2003, Proceedings of the International Conference on Shape Memory and Superplastic Technologies, eds. T. W. Duerig and A. Pelton, (SMST–ASM International, Metals Park, OH, 2003), p. 357.

  15. D. Vojtěch, P. Novák, M. Novák, L. Jaska, T. Fabián, J. Maixner, and V. Machovič, Intermetallics 16, 424 (2008).

    Google Scholar 

  16. C. H. Xu, X. Q. Ma, S. Q. Shi, and C. H. Woo, Materials Science and Engineering A 371, 45 (2004).

    Google Scholar 

  17. Q. Tian and J. Wu, Materials Science Forum 394–395, 455 (2002).

    Google Scholar 

  18. Q. Tian, J. Chen, Y. Chen, and J. Wu, Z. Metallkde, 94, 36 (2003).

  19. K.-N. Lin and S.-K. Wu, Oxidation of Metals 71, 187 (2009).

    Article  CAS  Google Scholar 

  20. J. L. Smialek, D. L. Humphrey, and R. D. Noebe, NASA TM-2007-214697 (NASA, Washington, DC, 2007).

  21. B. Pieraggi, Oxidation of Metals 27, 177 (1987).

    Google Scholar 

  22. E. A. Gulbransen and K. F. Andrew, Journal of the Electrochemical Society 128, 121 (1954).

    Google Scholar 

  23. D. J. Progar and B. W. Lewis, NASA TN-D 2224 (NASA, Washington DC, December 1964).

  24. A. Atkinson, R. I. Taylor, and A. E. Hughes, Philosophical Magazine A45, 823 (1982).

    ADS  Google Scholar 

  25. C. L. Zeng, M. C. Li, G. Q. Liu, and W. T. Wu, Oxidation of Metals 58, 171 (2002).

    Article  CAS  Google Scholar 

  26. J. L. Smialek and D. L. Humphrey, Scripta Metallurgica et Materialia 26, 1763 (1992).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NASA Fundamental Aeronautics Program, Supersonics Project, Dale Hopkins, Assoc. Principal Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Smialek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smialek, J.L., Humphrey, D.L. & Noebe, R.D. Comparative Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy. Oxid Met 74, 125–144 (2010). https://doi.org/10.1007/s11085-010-9202-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9202-x

Keywords

Navigation