Skip to main content
Log in

Effect of Mechanical Loading on the Oxidation Kinetics and Oxide-Scale Failure of Pure Ni

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

An Erratum to this article was published on 27 May 2009

Abstract

The oxidation kinetics and mechanism of oxide-scale failure of pure Ni oxidized under external static compressive and tensile loads were studied. The results showed that both types of mechanical loads accelerated the oxidation rate, but the effect was different for the two types. Compressive loading (CL) affected it by improving the plasticity of oxide scales, and tensile loading (TL) affected it by amplifying the compaction of the oxide–metal interface. As for the oxide-scale failure, CL can delayed cracking, TL accelerated brittle failure. The study analyzed the effect of external load on the oxidation kinetics and the failure mechanism of oxide scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Peraldi, D. Monceau, and B. Pieraggi, Oxidation of Metals 58(3/4), 275 (2002).

    Article  CAS  Google Scholar 

  2. A. M. Huntz, M. Andrieux, and R. Molins, Materials Science and Engineering A415, 21 (2006).

    CAS  Google Scholar 

  3. R. Haugsrud, Corrosion Science 45, 216 (2003).

    Google Scholar 

  4. F. Morin, L. C. Dufour, and G. Trudel, Oxidation of Metals 37(1/2), 39 (1992).

    Article  CAS  Google Scholar 

  5. R. Peraldi, B. Pieraggi, and D. Monceau, Oxidation of Metals 58(3/4), 249 (2002).

    Article  CAS  Google Scholar 

  6. D. Caplan, M. J. Graham, and M. Cohen, Journal of Electrochemical Society 119(9), 1205 (1972).

    Article  CAS  Google Scholar 

  7. R. Haugsrud, Corrosion Science 45, 1289 (2003).

    Article  CAS  Google Scholar 

  8. F. Czerwinski, Ph.D. thesis, McGill University, Montreal, 1997.

  9. M. M. Nagl and W. T. Evans, Journal of Materials Science 28, 6247 (1993).

    Article  ADS  CAS  Google Scholar 

  10. H. E. Evans, International Materials Reviews 40(1), 1 (1995).

    CAS  Google Scholar 

  11. J. Robertson and M. I. Manning, Materials Science and Technology 6, 81 (1990).

    CAS  Google Scholar 

  12. M. Schütze, Materials Science and Technology 4, 407 (1988).

    Google Scholar 

  13. L. Gaillet, M. Viennot, P. Berger, and G. Moulin, Materials Science and Engineering A332, 382 (2002).

    CAS  Google Scholar 

  14. G. Moulin, P. Arevalo, and A. Salleo, Oxidation of Metals 45(1/2), 153 (1996).

    Article  CAS  Google Scholar 

  15. P. Berger, G. Moulin, and M. Viennot, Nuclear Instruments and Methods in Physics Research B130, 717 (1997).

    ADS  Google Scholar 

  16. M. F. Stroosnijder, V. Guttmann, R. J. N. Gommans, and J. H. W. De Wit, Materials Science and Engineering A121, 581 (1989).

    Google Scholar 

  17. R. Rolls and M. H. Shahhosseini, Oxidation of Metals 18, 115 (1982).

    Article  CAS  Google Scholar 

  18. J. Richmond and H. Thornton, in Oxidation of Experimental Alloys, EADC Tech. Rep. 58–164, Part l, National Bureau of Standards, June 1958.

  19. M. Schütze, Oxidation of Metals 25(5/6), 409 (1986).

    Article  Google Scholar 

  20. H. E. Evans, Materials Science and Technology 4, 415 (1988).

    CAS  Google Scholar 

  21. G. B. Gibbs and R. Hales, Corrosion Science 17, 487 (1977).

    Article  CAS  Google Scholar 

  22. F. R. N. Nabarro and C. Herring, in Creep in Metallic Materials: Dusional Creep, ed. J. Cadek (Academia Prague, Czechoslovakia, 1988), p. 208.

  23. M. Schütze, Materials Science and Technology 6, 32 (1990).

    Google Scholar 

  24. L. Gaillet, S. Benmedakhne, A. Laksimi, and G. Moulin, Journal of Materials Science 38, 1479 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Chinese National Natural Science Foundation (No. 50601004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Ma.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11085-009-9157-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C.H., Ma, H.T. & Wang, L. Effect of Mechanical Loading on the Oxidation Kinetics and Oxide-Scale Failure of Pure Ni. Oxid Met 70, 287–294 (2008). https://doi.org/10.1007/s11085-008-9121-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9121-2

Keywords

Navigation