Skip to main content
Log in

Chromium-oxide Growth on Fe–Cr–Ni Alloy Studied with Grazing-emission X-ray Fluorescence

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Using grazing-emission X-ray fluorescence (GEXRF), isothermal oxidation of the alloys 55Fe–25Cr–20Ni and 55Fe–25Cr–20Ni(+0.3Y) (wt.%) were studied as a function of oxidation time at 750 °C in O2. In addition, the effect of thermal cycling was studied. Using GEXRF, oxide thickness, the Cr-depletion zone in the substrate, and Fe and Ni concentrations in the oxide were monitored as a function of oxidation time. Scanning-electron microscopy was used to independently measure the Cr-depletion zone. Raman spectroscopy was used to measure the concentration of Fe2O3 appearing in the oxides in early oxidation (less than 2 h). Both GEXRF and Raman measurements show that the thermally-grown chromium oxide purifies with extended oxidation; initially abundant Fe2O3 became undetectable after 2 h of oxidation. However, the total Fe concentration was still ∼3% after 2 h but systematically decreased with further oxidation. Thermal cycling had no effect on these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Y. Hou, and J. Stringer, Materials Science and Engineering A 202, 1 (1995).

    Article  Google Scholar 

  2. A. Strawbridge, and P. Y. Hou, Materials at High Temperatures 12, 177 (1994).

    CAS  Google Scholar 

  3. M. J. Bennett, and A. T. Tuson, Materials Science and Engineering A 116, 79 (1989).

    Article  Google Scholar 

  4. L. V. Ramathan, Corrosion Science 35, 871 (1993).

    Article  Google Scholar 

  5. D. Renusch, B. Veal, M. Natesan, and M. Grimsditch, Oxidation of Metals 46(5/6), 365 (1996).

    Article  CAS  Google Scholar 

  6. Y. Li, Y. Baba, and T. Srkiguchi, Corrosion Science 43, 903 (2001).

    Article  CAS  Google Scholar 

  7. I. Koshelev, A. P. Paulikas, and B. Veal, Oxidation of Metals 51, 23 (1999).

    Article  CAS  Google Scholar 

  8. I. Koshelev, A. P. Paulikas, M. Beno, G. Jennings, J. Linton, S. Uran, and B. Veal, Physica B 304, 256 (2001).

    CAS  Google Scholar 

  9. S. Uran, B. Veal, M. Grimsditch, J. Pearson, and A. Berger, Oxidation of Metals 54, 73 (2000).

    Article  CAS  Google Scholar 

  10. I. Koshelev, A. P. Paulikas, S. Uran, M. B. Beno, G. Jennings, J. Linton, and B. W. Veal, Oxidation of Metals 59, 469 (2003).

    Article  CAS  Google Scholar 

  11. H. E. Evans, and A. T. Donaldson, Oxidation of Metals 50, 475 (1998).

    Article  Google Scholar 

  12. T. Ericsson, Oxidation of Metals 2, 401 (1970).

    Article  CAS  Google Scholar 

  13. A. F. Smith, and G. B. Gibbs, Metal Science Journal 3, 93 (1969).

    Article  Google Scholar 

  14. B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxidation of Metals 12, 413 (1978).

    Article  CAS  Google Scholar 

  15. H. E. Evans, Materials Science and Technology 4, 1089 (1988).

    CAS  Google Scholar 

  16. K. F. McCarty, and D. R. Boehme, Journal of Solid State Chemistry 79, 19 (1989).

    Article  CAS  Google Scholar 

  17. L. B. Pankrats, Thermodynamic Properties of Elements and Oxides (United States Department of Interior, Bureau of Mines, 1982).

  18. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London, New York, USA, 1988), p. 558.

  19. W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beskr, Oxidation of Metals 32, 67 (1989).

    Article  CAS  Google Scholar 

  20. K. Przybylski, and G. L. Yurek, Materials Science Forum 43, 1 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the US Department of Energy, Basic Energy Science, Materials Science under Contract No. W-31-109-ENG-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. W. Veal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koshelev, I.K., Paulikas, A.P., Beno, M. et al. Chromium-oxide Growth on Fe–Cr–Ni Alloy Studied with Grazing-emission X-ray Fluorescence. Oxid Met 68, 37–51 (2007). https://doi.org/10.1007/s11085-007-9053-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-007-9053-2

Keywords

PACS

Navigation