Skip to main content
Log in

Pre-oxidation of Inconel Alloys for Inhibition of Carbon Deposition from Heated Jet Fuel

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Exposure of superalloy surfaces to jet fuel at elevated temperatures leads to the formation of carbonaceous deposits and metal sulfides. The formation of stable oxide layers on alloy surfaces can reduce the activity of the constituent transition metals that catalyze the dehydrogenation of hydrocarbons and the subsequent carbon deposit growth. The metals Ni, Cr, Fe, Mn, Al, Ti and Nb + Ta form thermodynamically stable oxide layers after oxidation above 800°C under O2 flow. In this study, we investigated the formation of oxides and spinels on three different Ni-base superalloys (Inconel 600, Inconel 718, and Inconel X750) and their activity towards carbon and sulfur deposit formation from jet fuel (JP-8) thermal stressing at 600°C and 34 atm (500 psig) for 5 hr. Metal oxide formation during pre-oxidation and the behavior of pre-oxidized samples in thermal stressing were found to depend strongly on the minor element composition of these superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zabarnick S. (1994) aa. Industrial & Engineering Chemistry Research 33: 1348

    Article  CAS  Google Scholar 

  2. R. W. Stickles, W. J. Dodds, T. R. Koblish, J. Sager and S. Clouser, Agard Conf. Proceed. 536, Fuels and Combustion Technology for Advanced Aircraft Engines, Italy, p. 20–1, May 1993.

  3. D. L. Linne, M. L. Meyer, T. Edwards, and D. A. Eitman. AIAA-97–3041.

  4. Altin O., Eser S. (2001). Industrial & Engineering Chemistry Research 40: 642

    Google Scholar 

  5. R. T. K. Baker and P. S. Harris, in Chemistry and Physics of Carbon, P. L. Walker ed. 14, 83 (1978).

  6. Ryniers M., Froment F. G. (1995). Industrial & Engineering Chemistry Research 34: 773

    Article  Google Scholar 

  7. L. F. Albright and T. C. H. Tsai, in Pyrolysis: Theory and Industrial Practice, L. F. Albright, B. L. Crynes, and W. H. Corcoran eds., Chap. 10, 233 (1983).

  8. Graff M. J., Albright L. F. (1982). Carbon 20: 319

    Article  CAS  Google Scholar 

  9. Altin O., Eser S. (2001). Industrial Engineering Chemistry Research 40: 596

    Article  CAS  Google Scholar 

  10. Fujita M., Jomyungyong S., Itoh Y., Yokoyama S., Matsumoto S. (1997). Transactions of the Institute of Metal Finishing 75(3): 98

    CAS  Google Scholar 

  11. K. L. Luthra and D. W. McKee, U. S. Patent, 5,077,140 (1991).

  12. W. E. Olson and D. K. Gupta, U. S. Patent, 4,933,239 (1990).

  13. O. Altin, A. Venkataraman, and S. Eser, ACS, Div. Pet. Chem. 216th Nat. Meet. 43(3), 404 (1998).

  14. S. Ibarra, in Pyrolysis: Theory and Industrial Practice, L. F. Albright, B. L. Crynes, and W. H. Corcoran eds., Chap. 16, 427 (1983).

  15. Holm R. A., Evans H. E. (1987). Materials and Corrosion 38: 166

    Article  CAS  Google Scholar 

  16. Kutsumi H., Muneki S., Itagaki T., Abe F. (2002). Journal of Japanese Institute of Metals 66(10): 997

    CAS  Google Scholar 

  17. McIntyre N. S., Zetaruk D. G., Owen D. (1978). Applied Surface Science 2: 55

    Article  CAS  Google Scholar 

  18. Lenglet M., Guillamet R., Lopitaux J., Hannoyer B. (1990). Materials Research Bulletin 25: 715

    Article  CAS  Google Scholar 

  19. Kumar L., Venkataramani R., Sundararaman M., Mukhopahyay P., Garg S. P. (1996). Oxidation of Metals 45(1/2): 221

    Article  CAS  Google Scholar 

  20. Durasso M., Ramanathan R. L. (1981). Congresso Anual da ABM 36: 353

    Google Scholar 

  21. Giggins C. S., Petit F. S. (1969). Transactions of Metallrgical Society at AIME 245: 2495

    CAS  Google Scholar 

  22. Chen J. H., Rogers P. M., Litte J. A. Oxidation of Metals 47(5/6), (1997).

  23. Sims C. T., Stoloff N. S., Hagel W. C. (1987) Superalloys. John Wiley & Sons, Inc., New York

    Google Scholar 

  24. Elliot P., Hampton A. F. (1980). Oxidation of Metals 14: 449

    Google Scholar 

  25. Taylor W. F. (1976). Industrial and Engineering Chemistry: Product Research and Development 15: 64

    Article  CAS  Google Scholar 

  26. Velenyi L. J., Song Y., Fagley J. C. (1981). Industrial & Engineering Chemistry Research 31: 285

    Google Scholar 

  27. Reyners M. F. S. G., Froment G. F. (1995). Industrial Engineering Chemistry Research 34: 773

    Article  Google Scholar 

  28. Tan C. D., Baker R. T. K. (2000). Catalysis Today 63: 3

    Article  CAS  Google Scholar 

  29. Ohla K., Grabke H. J. (1982). Werkstoffe und Korrosion 33: 341

    Article  CAS  Google Scholar 

  30. Trimm D. L., Turner C. J. J. (1981). Chemical Technology and Biotechnology 31: 285

    Article  CAS  Google Scholar 

  31. Mrowec S., Walec T., Werber T. (1970). Oxidation of Metals 1: 925

    Google Scholar 

  32. Statford K. N., Manifol R. (1969). Corrosion Science 9: 489

    Article  Google Scholar 

  33. Altin O., Eser S. (2000). Industrial Engineering Chemistry Research 39(3): 642

    Article  CAS  Google Scholar 

  34. Millward G. R., Evans H. E., Aindow M., Mowforth C. W. (2001). Oxidation of Metals 56(3/4): 231

    Article  CAS  Google Scholar 

  35. Douglass D. L., Rizzo-Assuncao F. (1988). Oxidation of Metals 29: 272

    Google Scholar 

  36. Hussain N., Shahid K. A., Khan I. H., Rahman S. (1994). Oxidation of Metals 41(1/2): 251

    Article  CAS  Google Scholar 

  37. Litz J., Rahmel A., Schorr M., Weiss J. (1989). Oxidation of Metals 32: 167

    Article  CAS  Google Scholar 

  38. Abe F., Araki H., Yoshida H., Okada M. (1987). Oxidation of Metals 27(1/2): 21

    Article  CAS  Google Scholar 

  39. Horsley G. W., Cairns J. A. (1984). Applied Surface Science 18: 273

    Article  CAS  Google Scholar 

  40. Castle J. E., Durbin M. J. (1975). Carbon 13: 23

    Article  CAS  Google Scholar 

  41. Marasco A. L., Young D. J. (1991). Oxidation of Metals 36: 157

    Article  CAS  Google Scholar 

  42. Tomita A., Yoshida K., Nishiyama Y., Tamai Y. (1972). Carbon 30: 601

    Article  Google Scholar 

  43. L. B. Pankratz, J. M. Stuve, and N. A. Gokcen, Thermodynamic Data for Mineral Technology (U. S. Bureau of Mines. Bull. No. 677, 1984).

  44. Jablonski G. A., Geurts F. W., Sacco A. Jr, Biederman R. R. (1992). Carbon 30(1): 87

    Article  CAS  Google Scholar 

  45. Jablonski G. A., Geurts F. W. A. H., Sacco A. Jr (1992). Carbon 30(1): 99

    Article  CAS  Google Scholar 

  46. O. Altin and S. Eser, manuscript in preparation.

  47. Wolf I., Grabke H. J. (1985). Solid State Communications 54: 5

    Article  CAS  Google Scholar 

  48. Figueiredo J. L. (1998). Materials and Corrosion 49: 373

    Article  CAS  Google Scholar 

  49. Allen G. C., Jutson J. A. (1991). Journal of Material Chemistry 1(1): 73

    Article  CAS  Google Scholar 

  50. Steurbaut C., Grabke H. J., Stobbe D., van Buren F. R., Korf S. J., Defrancq J. (1998). Materials and Corrosion 49: 352

    Article  CAS  Google Scholar 

  51. F. Zhang, O. Altin, and S. Eser, Carbon’99 24th Biennial Conference on Carbon, Vol. 2, 814 (1999).

  52. Baker (R. T. K. Baker, Carbon Fibers Filaments and Composites, NATO ASI Series, Series E, V. 1117, 405, (1989) (Eds. J. L. Figueiredo, C. A. Bernardo, R. T. K. Baker and K. J. Huttinger).

  53. Grabke H. J., Ohla K., Peters J., Wolf I. (1983). Werkstoffe und Korrosion 34: 495

    Article  CAS  Google Scholar 

  54. Du H. L., Kipkemoi J., Tsipas D. N., Datta P. K. (1996). Surface and Coatings Technology 86–87: 1

    Article  Google Scholar 

  55. Forseth S., Kofstad P. (1995). Materials and Corrosion 46: 201

    Article  CAS  Google Scholar 

  56. Grapke H. J., Krajak R., Muller-Lorenz (1993). Materials and Corrosion 44: 89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semih Eser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altin, O., Eser, S. Pre-oxidation of Inconel Alloys for Inhibition of Carbon Deposition from Heated Jet Fuel. Oxid Met 65, 75–99 (2006). https://doi.org/10.1007/s11085-006-9002-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-006-9002-5

Keywords

Navigation