Skip to main content
Log in

Optical solitons with Kudryashov’s quintuple power–law coupled with dual form of non–local law of refractive index with extended Jacobi’s elliptic function

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The extended Jacobi’s elliptic function scheme is implemented in this paper to recover a wide range of optical solitons for nonlinear Schrödinger’s equation that comes with two forms of self–phase modulation effect. They are Kudryashov’s quintuple power law together with dual–form of non–local nonlinearity. The extended Jacobi’s elliptic function approach reveals bright, dark and singular soliton solutions along dark–singular form of straddled solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdou, M.A., Elhanbaly, A.: Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method. Commun. Nonlinear Sci. Numer. Simul. 12(7), 1229–1241 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Arnous, A.H.: “Optical solitons with Biswas-Milovic equation in magneto-optic waveguide having Kudryashov’s law of refractive index". Optik. 247, 167987 (2021)

    Article  ADS  Google Scholar 

  • Arnous, A.H., Mirzazadeh, M.: Bäcklund transformation of fractional Riccati equation and its applications to the space-time FDEs. Math. Methods Appl. Sci. 38(18), 4673–4678 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bakodah, H.O., Al Qarni, A.A., Banaja, M.A., Zhou, Q., Moshokoa, S.P., Biswas, A.: Bright and dark Thirring optical solitons with improved adomian decomposition method. Optik 130, 1115–1123 (2017)

    Article  ADS  Google Scholar 

  • Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: “Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method". Commun. Nonlinear Sci. Numer. Simul. 18(4), 915–925 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Biswas, A., Konar, S.: Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton, FL (2006)

    Book  MATH  Google Scholar 

  • Biswas, A.: 1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation. Phys. Lett A 373(30), 2546–2548 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Biswas, A., Milovic, D., Kohl, R.: Optical soliton perturbation in a log-law medium with full nonlinearity by He’s semi-inverse variational principle. Inverse Problems Sci. Eng. 20(2), 227–232 (2012)

    Article  MATH  Google Scholar 

  • Biswas, A., Mirzazadeh, M., Eslami, M., Zhou, Q., Bhrawy, A., Belic, M.: Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. Optik. 127(18), 7250–7257 (2016)

    Article  ADS  Google Scholar 

  • Biswas, A., Arshed, S.: Optical solitons in presence of higher order dispersions and absence of self-phase modulation. Optik. 174, 452–459 (2018)

    Article  ADS  Google Scholar 

  • Biswas, A.: Optical soliton cooling with polynomial law of nonlinear refractive index. J. Opt. 49, 580–583 (2020)

    Article  Google Scholar 

  • Ekici, M., Zhou, Q., Sonmezoglu, A., Moshokoa, S.P., Ullah, M.Z., Biswas, A., Belic, M.: Solitons in magneto-optic waveguides by extended trial function scheme. Superlattices Microstruct. 107, 197–218 (2017)

    Article  ADS  Google Scholar 

  • Ekici, M.: Optical solitons with Kudryashov’s quintuple power-law nonlinearity coupled with dual form of generalized non-local refractive index structure. Optik 243(6), 166723 (2021)

  • Huiqun, Z.: Extended Jacobi elliptic function expansion method and its applications. Commun. Nonlinear Sci. Numer. Simul. 12(5), 627–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Kara, A.H.: On the invariance and conservation laws of differential equations. Trans. R. Soc. S. Afr. 76(1), 89–95 (2021)

    Article  Google Scholar 

  • Kara, A.H.: A the invariance and conservation laws of the Triki-Biswas equation describing monomode optical fibers. Optik. 186, 300–302 (2019)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: Solitary wave solutions of hierarchy with non-local nonlinearity. Appl. Math. Lett. 103, 106155 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Kudryashov, N.A.: Lax pairs for one of hierarchies similar to the first Painlevé hierarchy. Appl. Math. Lett. 116, 107003 (2021)

    Article  MATH  Google Scholar 

  • Kudryashov, N.A., Safonova, D.V.: Painlevé analysis and traveling wave solutions of the sixth order differential equation with non-local nonlinearity. Optik. 244, 167586 (2021)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: Optical solitons of the model with arbitrary refractive index. Optik. 224, 165767 (2020)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik. 212, 164750 (2020)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: Model of propagation pulses in an optical fiber with a new law of refractive indices. Optik. 248, 168160 (2021)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik. 206, 163550 (2020)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: A generalized model for description of propagation pulses in optical fiber. Optik. 189, 42–52 (2019)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: Optical solitons of the resonant nonlinear Schrödinger equation with arbitrary index. Optik. 235, 166626 (2021)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: Almost general solution of the reduced higher-order nonlinear Schrödinger equation. Optik. 230, 166347 (2021)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: First integrals and general solution of the complex Ginzburg-Landau equation. Appl. Math. Comput. 386, 125407(2020)

    MathSciNet  MATH  Google Scholar 

  • Kudryashov, N.A.: Highly dispersive optical solitons of an equation with arbitrary refractive index. Regular Chaotic Dyn. 25, 537–543 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kudryashov, N.A.: Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chin. J. Phys. 66, 401–405 (2020)

    Article  MathSciNet  Google Scholar 

  • Kudryashov, N.A.: Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. (2020). https://doi.org/10.1016/j.amc.2019.124972

    Article  MATH  Google Scholar 

  • Kudryashov, N.A.: The generalized Duffing oscillator. Commun. Nonlinear Sci. Numer. Simul. 93, 105526 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, X., Triki, H., Zhou, Q., Liu, W., Biswas, A.: Analytic study on interactions between periodic solitons with controllable parameters. Nonlinear Dyn. 94(1), 703–709 (2018)

    Article  Google Scholar 

  • Liu, S., Zhou, Q., Biswas, A., Liu, W.: Phase-shift controlling of three solitons in dispersion-decreasing fibers. Nonlinear Dyn. 98(1), 395–401 (2019)

    Article  MATH  Google Scholar 

  • Malomed, B.A.: New findings for the old problem: exact solutions for domain walls in coupled real Ginzburg-Landau equations. Phys. Lett. A 422 (2021)

  • Malomed, B.A.: Optical solitons and vortices in fractional media: a mini-review of recent results. Photonics. 8(9), 353 (2021)

    Article  Google Scholar 

  • Petrovic, N.Z., Bohra, M.: General Jacobi elliptic function expansion method applied to the generalized (3+1)-dimensional nonlinear Schrödinger equation. Opt. Quant. Electron. 48(4), 268 (2016)

    Article  Google Scholar 

  • Qiu, Y., Malomed, B.A., Mihalache, D., Zhu, X., Peng, J., He, Y.: Generation of stable mult-vortex clusters in a dissipative medium with anti-cubic nonlinearity. Phys. Lett. A 383, 2579–2583 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Qiu, Y., Malomed, B.A., Mihalache, D., Zhu, X., Zhang, L., He, Y.: Soliton dynamics in a fractional complex Ginzburg-Landau model. Chaos Solitons Fractals 131, 109471 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Sonmezoglu, A., Yao, M., Ekici, M., Mirzazadeh, M., Zhou, Q.: Explicit solitons in the parabolic law nonlinear negative-index materials. Nonlinear Dyn. 88(1), 595–607 (2017)

    Article  MATH  Google Scholar 

  • Susanto, H., Malomed, B.A.: Embedded solitons in second-harmonic-generating lattices. Chaos Solitons Fractals 142, 110534 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Triki, H., Zhou, Q., Liu, W.: \(W\)-shaped solitons in inhomogeneous cigar-shaped Bose-Einstein condensates with repulsive interatomic interactions. Laser Phys. 29(5), 055401 (2019)

    Article  ADS  Google Scholar 

  • Wang, C., Nie, Z., Xie, W., Gao, J., Zhou, Q., Liu, W.: Dark soliton control based on dispersion and nonlinearity for third-order nonlinear Schrödinger equation. Optik. 184, 370–376 (2019)

    Article  ADS  Google Scholar 

  • Yildirim, Y.: Optical solitons with Biswas-Arshed equation by \(F\)-expansion method. Optik. 227, 165788 (2021)

    Article  ADS  Google Scholar 

  • Yildirim, Y.: Optical solitons in birefringent fibers with Biswas-Arshed equation by sine-Gordon equation method. Optik. 227, 165960 (2021)

    Article  ADS  Google Scholar 

  • Yildirim, Y.: Optical solitons with Biswas-Arshed equation by sine-Gordon equation method. Optik. 223, 165622 (2020)

    Article  ADS  Google Scholar 

  • Zhang, Z.Y.: Jacobi elliptic function expansion method for the modified Korteweg-de Vries-Zakharov Kuznetsov and the Hirota equations. Roman. J. Phys. 60(9–10), 1384–1394 (2015)

    Google Scholar 

  • Zhou, Q., Liu, L., Zhang, H., Wei, C., Lu, J., Yu, H., Biswas, A.: Analytical study of Thirring optical solitons with parabolic law nonlinearity and spatio-temporal dispersion. Eur. Phys. J. Plus 130(7), 138 (2015)

    Article  Google Scholar 

  • Zhou, Q.: Soliton and soliton-like solutions to the modified Zakharov-Kuznetsov equation in nonlinear transmission line. Nonlinear Dyn. 83, 1429–1435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Q., Mirzazadeh, M., Zerrad, E., Biswas, A., Belic, M.: Bright, dark, and singular solitons in optical fibers with spatio-temporal dispersion and spatially dependent coefficients. J. Modern Opt. 63(10), 950–954 (2016)

    Article  ADS  Google Scholar 

  • Gepreel, K.A., Zayed, E.M.E., Alngar, M.E.M., Biswas, A., Guggilla, P., Khan, S., Yıldırım, Y., Alzahrani, A.K., Belic, M.R.: “Optical solitons with Kudryashov’s arbitrary form of refractive index and generalized non-local nonlinearity". Optik. 243, 166723 (2021)

    Article  ADS  Google Scholar 

  • Yıldırım, Y., Biswas, A., Kara, A.H., Guggilla, P., Khan, S., Alzahrani, A.K., Belic, M.R.: “Optical soliton perturbation and conservation law with Kudryashov’s refractive index having quadrupled power-law and dual form of generalized nonlocal nonlinearity". Optik. 240, 166966 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Ekici.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} \begin{array}{c} b_1= \displaystyle \frac{a \alpha _1^2 (m-1)}{m^2} , \quad b_3= \displaystyle 4 b_6 (k+1) -12 b_7 \alpha _1^2 -\frac{a k (m+1)}{m^2\alpha _1^2 } , \quad b_4= \displaystyle 16 b_7 (k+1)-\frac{6 b_6 k}{\alpha _1^2} , \quad b_5= \displaystyle -\frac{20 b_7 k}{\alpha _1^2} \end{array} \end{aligned}$$
(50)
$$\begin{aligned} \begin{array}{c} b_1= \displaystyle \frac{a k \beta _1^2 (m-1)}{m^2} , \quad b_3= \displaystyle 4 b_6 (k+1) -12 b_7 k \beta _1^2 -\frac{a (m+1)}{m^2 \beta _1^2 } , \quad b_4= \displaystyle 16 b_7 (k+1)-\frac{6 b_6}{\beta _1^2} , \quad b_5= \displaystyle -\frac{20 b_7}{\beta _1^2} \end{array} \end{aligned}$$
(51)
$$\begin{aligned} \begin{array}{c} b_1= \displaystyle \frac{4 a \beta _1^2 \sqrt{k}\left( \sqrt{k}+1\right) ^2 (m-1)}{m^2} , \quad b_3= \displaystyle 4 b_6 \left( k+6\sqrt{k}+1\right) -48 b_7 \beta _1^2 \sqrt{k} \left( \sqrt{k}+1\right) ^2 -\frac{a (m+1)}{m^2\beta _1^2 }, \\ \\ b_4= \displaystyle 16 b_7 \left( k+6 \sqrt{k}+1\right) -\frac{6 b_6}{\beta _1^2} , \quad b_5= \displaystyle -\frac{20 b_7}{\beta _1^2} . \end{array} \end{aligned}$$
(52)

Appendix B

$$\begin{aligned} \begin{array}{c} b_1= \displaystyle -\frac{a \alpha _1^2 (k-1) (m-1)}{m^2} , \quad b_3= \displaystyle 4b_6 (1-2 k) +12 b_7\alpha _1^2 (k-1) + \frac{a k (m+1)}{m^2\alpha _1^2 } , \\ \\ b_4= \displaystyle 16 b_7 (1- 2 k) + \frac{6 b_6 k}{\alpha _1^2} , \quad b_5= \displaystyle \frac{20 b_7 k}{\alpha _1^2} \end{array} \end{aligned}$$
(53)
$$\begin{aligned} \begin{array}{c} b_1= \displaystyle -\frac{a k \beta _1^2 (m-1)}{m^2} , \quad b_3= \displaystyle 4b_6 (1-2 k) +12 b_7 k \beta _1^2 + \frac{a (k-1) (m+1)}{m^2 \beta _1^2 } , \\ \\ b_4= \displaystyle 16 b_7 (1- 2 k) + \frac{6 b_6 (k-1)}{\beta _1^2} , \quad b_5= \displaystyle \frac{20 b_7 (k-1)}{\beta _1^2} \end{array} \end{aligned}$$
(54)
$$\begin{aligned} \begin{array}{c} b_1= \displaystyle -\frac{4 a k_1 \alpha _1^2 (m-1)}{\sqrt{k} m^2} , \quad b_3= \displaystyle 4 \left( b_6 k_2-12 b_7 k_3 \alpha _1^2\right) + \frac{a k (m+1)}{m^2 \alpha _1^2} , \quad b_4= \displaystyle 16 b_7 k_2 + \frac{6 b_6 k}{\alpha _1^2} , \quad b_5= \displaystyle \frac{20 b_7 k}{\alpha _1^2} . \end{array} \end{aligned}$$
(55)

Here, the abbreviations \(k_1\), \(k_2\) and \(k_3\) are given by

$$\begin{aligned} k_1= 2 \sqrt{k} \left( k+\sqrt{k(k-1)}-1\right) -\sqrt{k-1} , \quad k_2= 1 -2 k-6 \sqrt{k(k-1)} , \quad k_3= 2 -2 \left( k+\sqrt{k(k-1)} \right) +\sqrt{\frac{k-1}{k}} . \end{aligned}$$
(56)

Appendix C

$$\begin{aligned} \begin{array}{c} b_1= \displaystyle \frac{a \alpha _1^2 (k-1) (m-1)}{m^2} , \quad b_3= \displaystyle 4 b_6 (k-2) -12 b_7 \alpha _1^2 (k-1) + \frac{a (m+1)}{m^2\alpha _1^2 } , \quad b_4= \displaystyle 16 b_7 (k-2) + \frac{6 b_6}{\alpha _1^2} , \quad b_5= \displaystyle \frac{20 b_7}{\alpha _1^2} \end{array} \end{aligned}$$
(57)
$$\begin{aligned} \begin{array}{c} b_1= \displaystyle -\frac{a \beta _1^2 (m-1)}{m^2} , \quad b_3= \displaystyle 4 b_6 (k-2) +12 b_7 \beta _1^2 -\frac{a (k-1) (m+1)}{m^2 \beta _1^2 } , \\ \\ b_4= \displaystyle 16 b_7 (k-2)-\frac{6 b_6 (k-1)}{\beta _1^2} , \quad b_5= \displaystyle -\frac{20 b_7 (k-1)}{\beta _1^2} \end{array} \end{aligned}$$
(58)
$$\begin{aligned} \begin{array}{c} b_1= \displaystyle \frac{4 a k_4 \alpha _1^2 (m-1)}{m^2} , \quad b_3= \displaystyle 4 \left( b_6 k_5-12 b_7 k_4\alpha _1^2\right) + \frac{a (m+1)}{m^2\alpha _1^2} , \quad b_4= \displaystyle 16 b_7 k_5 + \frac{6 b_6}{\alpha _1^2} , \quad b_5= \displaystyle \frac{20 b_7}{\alpha _1^2} . \end{array} \end{aligned}$$
(59)

Here, the abbreviations \(k_4\) and \(k_5\) are indicated as follows:

$$\begin{aligned} k_4 = k \left( 2 + \sqrt{1-k}\right) -2 \left( 1 + \sqrt{1-k}\right) , \quad k_5 = k-2-6 \sqrt{1-k} . \end{aligned}$$
(60)

Appendix D

$$\begin{aligned} \begin{array}{c} b_1= \displaystyle -\frac{a \alpha _1^2 (k-1) (m-1)}{m^2} , \quad b_3= \displaystyle 4 b_6 (k-2) +12 b_7 \alpha _1^2 (k-1) -\frac{a (m+1)}{ m^2\alpha _1^2} , \quad b_4= \displaystyle 16 b_7 (k-2)-\frac{6 b_6}{\alpha _1^2} , \quad b_5= \displaystyle -\frac{20 b_7}{\alpha _1^2} \end{array} \end{aligned}$$
(61)
$$\begin{aligned} \begin{array}{c} b_1= \displaystyle \frac{a \beta _1^2 (m-1)}{m^2} , \quad b_3= \displaystyle 4 b_6 (k-2) -12 b_7 \beta _1^2 + \frac{a (k-1) (m+1)}{m^2 \beta _1^2 } , \\ \\ b_4= \displaystyle 16 b_7 (k-2) + \frac{6 b_6 (k-1)}{\beta _1^2} , \quad b_5= \displaystyle \frac{20 b_7 (k-1)}{\beta _1^2} \end{array} \end{aligned}$$
(62)
$$\begin{aligned} \begin{array}{c} b_1= \displaystyle \frac{4 a k_6 \alpha _1^2 (m-1)}{m^2} , \quad b_3= \displaystyle 4 \left( b_6 k_7-12 b_7 k_6 \alpha _1^2 \right) -\frac{a (m+1)}{m^2\alpha _1^2} , \quad b_4= \displaystyle 16 b_7 k_7-\frac{6 b_6}{\alpha _1^2} , \quad b_5= \displaystyle -\frac{20 b_7}{\alpha _1^2} . \end{array} \end{aligned}$$
(63)

Here, the abbreviations \(k_6\) and \(k_7\) are denoted as

$$\begin{aligned} k_6 = 2 + k \left( \sqrt{1-k}-2\right) -2 \sqrt{1-k} , \quad k_7 = k-2+6 \sqrt{1-k} . \end{aligned}$$
(64)

Appendix E

$$\begin{aligned} \begin{array}{c} b_1= \displaystyle \frac{a \alpha _1^2 k (k-1) (m-1)}{m^2} , \quad b_3= \displaystyle 4 b_6 (1-2 k) -12 b_7 \alpha _1^2 k (k-1) -\frac{a (m+1)}{m^2\alpha _1^2 } , \\ \\ b_4= \displaystyle 16 b_7 (1-2 k)-\frac{6 b_6}{\alpha _1^2} , \quad b_5= \displaystyle -\frac{20 b_7}{\alpha _1^2} \end{array} \end{aligned}$$
(65)
$$\begin{aligned} \begin{array}{c} b_1= \displaystyle \frac{a \beta _1^2 (m-1)}{m^2} , \quad b_3= \displaystyle 4b_6 (1-2 k) -12 b_7 \beta _1^2 -\frac{a k (k-1) (m+1)}{m^2\beta _1^2 } , \\ \\ b_4= \displaystyle 16b_7 (1- 2 k)-\frac{6 b_6 k (k-1) }{\beta _1^2} , \quad b_5= \displaystyle -\frac{20 b_7 k (k-1) }{\beta _1^2} \end{array} \end{aligned}$$
(66)
$$\begin{aligned} \begin{array}{c} b_1= \displaystyle -\frac{4 a k_8 \alpha _1^2 (m-1)}{m^2} , \quad b_3= \displaystyle 4 \left( b_6 k_9 + 12 b_7 k_8\alpha _1^2\right) -\frac{a (m+1)}{m^2\alpha _1^2} , \quad b_4= \displaystyle 16 b_7 k_9-\frac{6 b_6}{\alpha _1^2} , \quad b_5= \displaystyle -\frac{20 b_7}{\alpha _1^2} . \end{array} \end{aligned}$$
(67)

Here, the following abbreviations \(k_8\) and \(k_9\) are used:

$$\begin{aligned} k_8 = 2 k \left( 1-k+\sqrt{k(k-1) }\right) -\sqrt{k(k-1) } , \quad k_9 = 1 -2 k+6 \sqrt{ k(k-1)} . \end{aligned}$$
(68)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekici, M. Optical solitons with Kudryashov’s quintuple power–law coupled with dual form of non–local law of refractive index with extended Jacobi’s elliptic function. Opt Quant Electron 54, 279 (2022). https://doi.org/10.1007/s11082-022-03657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03657-0

Keywords

Navigation