Skip to main content
Log in

Exact solitary optical wave solutions and modulational instability of the truncated \(\varOmega -\)fractional Lakshamanan–Porsezian–Daniel model with Kerr, parabolic, and anti-cubic nonlinear laws

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article we have acquired exact solitary wave solutions for the truncated \(\varOmega -\)fractional Lakshamanan–Porsezian–Daniel model with Kerr, parabolic, and anti-cubic nonlinear laws employing extended auxiliary technique. Diverse set of exponential function solutions acquired relying on a map between the considered equation and an auxiliary ODE. Obtained solutions are recast in several hyperbolic and trigonometric forms based on different restrictions between parameters involved in equations and integration constants that appear in the solution. A few significant ones among the reported solutions are pictured to perceive the physical utility and peculiarity of the considered model using mathematical software. In the end, the modulation instability analysis of the proposed model with normal derivatives is also carried out for Kerr, parabolic, and anti-cubic nonlinear laws. For these three cases, dispersion relations are obtained and explained with plots. Results turned out here may be useful in network technology to study the characteristics of fiber optic communication over inter-continental distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availibility

All data generated or analyzed during this study are included in this published article.

References

  • Abazari, R.: Solitary-wave solutions of the klein-gordon equation with quintic nonlinearity. J. Appl. Mech. Tech. Phys. 54(3), 397–403 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Abazari, R., Jamshidzadeh, S.: Exact solitary wave solutions of the complex klein-gordon equation. Optik-Int. J. Light Elect. Opt. 126(19), 1970–1975 (2015)

    Article  Google Scholar 

  • Abazari, R., Jamshidzadeh, S., Biswas, A.: Solitary wave solutions of coupled boussinesq equation. Complexity 21(S2), 151–155 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Agrawal, G.P.: Nonlinear fiber optics. In: Nonlinear Science at the Dawn of the 21st Century, pp. 195–211. Springer (2000)

  • Akinyemi, L., Şenol, M., Huseen, S.N.: Modified homotopy methods for generalized fractional perturbed zakharov-kuznetsov equation in dusty plasma. Adv. Differ. Equ. 2021(1), 1–27 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., Şenol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., Şenol, M., Mirzazadeh, M., Eslami, M.: Optical solitons for weakly nonlocal schrödinger equation with parabolic law nonlinearity and external potential. Optik 230, 166281 (2021)

    Article  ADS  Google Scholar 

  • Akram, G., Sadaf, M., Arshed, S., Sameen, F.: Bright, dark, kink, singular and periodic soliton solutions of lakshmanan-porsezian-daniel model by generalized projective riccati equations method. Optik 241, 167051 (2021)

    Article  ADS  Google Scholar 

  • Al Qarni, A., Alshaery, A., Bakodah, H.: Optical solitons for the lakshmanan-porsezian-daniel model by collective variable method. Results Opt. 1, 100017 (2020)

    Article  Google Scholar 

  • Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear schrödinger equations and their solutions. Phys. Rev. E 93(1), 012206 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Arshed, S., Biswas, A., Majid, F.B., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons in birefringent fibers for lakshmanan-porsezian-daniel model using exp (- \(\phi \) ())-expansion method. Optik 170, 555–560 (2018)

    Article  ADS  Google Scholar 

  • Biswas, A., Ekici, M., Sonmezoglu, A., Babatin, M.: Optical solitons with differential group delay and dual-dispersion for lakshmanan-porsezian-daniel model by extended trial function method. Optik 170, 512–519 (2018)

    Article  ADS  Google Scholar 

  • Biswas, A., Ekici, M., Sonmezoglu, A., Triki, H., Majid, F.B., Zhou, Q., Moshokoa, S.P., Mirzazadeh, M., Belic, M.: Optical solitons with lakshmanan-porsezian-daniel model using a couple of integration schemes. Optik 158, 705–711 (2018)

    Article  ADS  Google Scholar 

  • Chen, Y.Q., Tang, Y.H., Manafian, J., Rezazadeh, H., Osman, M.: Dark wave, rogue wave and perturbation solutions of ivancevic option pricing model. Nonlinear Dyn. 105(3), 2539–2548 (2021)

    Article  Google Scholar 

  • Chowdury, A., Kedziora, D., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear schrödinger equation with quintic terms. Phys. Rev. E 90(3), 032922 (2014)

    Article  ADS  Google Scholar 

  • Das, P.K.: Rapidly convergent approximation method to chiral nonlinear Schrodinger’s equation in (1+ 2)-dimensions. Sohag J. Math. 5, 29–33 (2018)

    Article  Google Scholar 

  • Das, P.K.: The rapidly convergent approximation method to solve system of equations and its application to the Biswas-Arshed equation. Optik 195, 163134 (2019)

    Article  ADS  Google Scholar 

  • Das, P.K.: Chirped and chirp-free optical exact solutions of the Biswas-Arshed equation with full nonlinearity by the rapidly convergent approximation method. Optik 223, 165293 (2020)

    Article  ADS  Google Scholar 

  • Das, P.K.: New multi-hump exact solitons of a coupled korteweg-de-vries system with conformable derivative describing shallow water waves via rcam. Phys. Scr. 95(10), 105212 (2020)

    Article  ADS  Google Scholar 

  • Das, P.K.: The genesis of two-hump, w-shaped and m-shaped soliton propagations of the coupled schrödinger-boussinesq equations with conformable derivative. Opt. Quant. Electron. 53(6), 1–23 (2021)

    Article  ADS  Google Scholar 

  • Das, P.K., Singh, D., Panja, M.: Solutions and conserved quantities of Biswas-Milovic equation by using the rapidly convergent approximation method. Optik 174, 433–446 (2018)

    Article  ADS  Google Scholar 

  • Das, P.K., Singh, D., Panja, M.M.: Some modifications on RCAM for getting accurate closed-form approximate solutions of Duffing-and Lienard-type equations. J. Adv. Math. 16, 8213–8225 (2019)

    Article  Google Scholar 

  • Dieu-donne, G., Hubert, M.B., Betchewe, G., Doka, S.Y., et al.: Optical solitons in birefringent fibers for lakshmanan-porsezian-daniel model by modified extended direct algebraic method. Optik 208, 164135 (2020)

    Article  ADS  Google Scholar 

  • El-Sheikh, M., Ahmed, H.M., Arnous, A.H., Rabie, W.B., Biswas, A., Alshomrani, A.S., Ekici, M., Zhou, Q., Belic, M.R.: Optical solitons in birefringent fibers with lakshmanan-porsezian-daniel model by modified simple equation. Optik 192, 162899 (2019)

    Article  ADS  Google Scholar 

  • Ghanbari, B.: Abundant exact solutions to a generalized nonlinear schrödinger equation with local fractional derivative. Math. Methods Appl. Sci. 44(11), 8759–8774 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ghanbari, B.: On novel nondifferentiable exact solutions to local fractional gardner’s equation using an effective technique. Math. Methods Appl. Sci. 44(6), 4673–4685 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ghanbari, B., Nisar, K.S., Aldhaifallah, M.: Abundant solitary wave solutions to an extended nonlinear schrödinger’s equation with conformable derivative using an efficient integration method. Adv. Differ. Eq. 2020(1), 1–25 (2020)

    MATH  Google Scholar 

  • Ghanbari, B., Rada, L., et al.: Solitary wave solutions to the tzitzeica type equations obtained by a new efficient approach. J. Appl. Anal. Comput. 9(2), 568–589 (2019)

    MathSciNet  MATH  Google Scholar 

  • Houwe, A., Sabi’u, J., Hammouch, Z., Doka, S.Y.: Solitary pulses of a conformable nonlinear differential equation governing wave propagation in low-pass electrical transmission line. Phys. Scripta 95(4), 045203 (2020)

    Article  ADS  Google Scholar 

  • Hubert, M.B., Betchewe, G., Justin, M., Doka, S.Y., Crepin, K.T., Biswas, A., Zhou, Q., Alshomrani, A.S., Ekici, M., Moshokoa, S.P., et al.: Optical solitons with lakshmanan-porsezian-daniel model by modified extended direct algebraic method. Optik 162, 228–236 (2018)

    Article  ADS  Google Scholar 

  • Javid, A., Raza, N.: Singular and dark optical solitons to the well posed lakshmanan-porsezian-daniel model. Optik 171, 120–129 (2018)

    Article  ADS  Google Scholar 

  • Jawad, A.J.M., Al Azzawi, F.J.I., Biswas, A., Khan, S., Zhou, Q., Moshokoa, S.P., Belic, M.R.: Bright and singular optical solitons for kaup-newell equation with two fundamental integration norms. Optik 182, 594–597 (2019)

    Article  ADS  Google Scholar 

  • Khan, Y.: Fractal lakshmanan-porsezian-daniel model with different forms of nonlinearity and its novel soliton solutions. Fractals 29(02), 2150032 (2021)

    Article  ADS  MATH  Google Scholar 

  • Khater, M., Jhangeer, A., Rezazadeh, H., Akinyemi, L., Akbar, M.A., Inc, M., Ahmad, H.: New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Opt. Quant. Electron. 53(11), 1–27 (2021)

    Article  Google Scholar 

  • Khodadad, F.S., Mirhosseini-Alizamini, S., Günay, B., Akinyemi, L., Rezazadeh, H., Inc, M.: Abundant optical solitons to the sasa-satsuma higher-order nonlinear schrödinger equation. Opt. Quant. Electron. 53(12), 1–17 (2021)

    Article  Google Scholar 

  • Korpinar, Z., Inc, M., Bayram, M., Hashemi, M.S.: New optical solitons for biswas-arshed equation with higher order dispersions and full nonlinearity. Optik 206, 163332 (2020)

    Article  ADS  Google Scholar 

  • Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the heisenberg spin chain. Phys. Lett. A 133(9), 483–488 (1988)

    Article  ADS  Google Scholar 

  • Mahak, N., Akram, G.: Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques. Phys. Scr. 94(11), 115212 (2019)

    Article  ADS  Google Scholar 

  • Manafian, J., Foroutan, M., Guzali, A.: Applications of the etem for obtaining optical soliton solutions for the lakshmanan-porsezian-daniel model. Eur. Phys. J. Plus 132(11), 1–22 (2017)

    Article  Google Scholar 

  • Manafian, J., Lakestani, M.: Abundant soliton solutions for the kundu-eckhaus equation via tan (\(\phi \) ())-expansion method. Optik 127(14), 5543–5551 (2016)

    Article  ADS  Google Scholar 

  • Raza, N., Arshed, S., Sial, S.: Optical solitons for coupled fokas-lenells equation in birefringence fibers. Mod. Phys. Lett. B 33(26), 1950317 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Rezazadeh, H., Kumar, D., Neirameh, A., Eslami, M., Mirzazadeh, M.: Applications of three methods for obtaining optical soliton solutions for the lakshmanan-porsezian-daniel model with kerr law nonlinearity. Pramana 94(1), 1–11 (2020)

    Article  ADS  Google Scholar 

  • Sabi’u, J., Jibril, A., Gadu, A.M.: New exact solution for the (3+ 1) conformable space-time fractional modified korteweg-de-vries equations via sine-cosine method. J. Taibah Univ. Sci. 13(1), 91–95 (2019)

    Article  Google Scholar 

  • Sadaf, M., Akram, G.: A legendre-homotopy method for the solutions of higher order boundary value problems. J King Saud Univ. Sci. 32(1), 537–543 (2020)

    Article  Google Scholar 

  • Sahoo, S., Saha Ray, S., Abdou, M.A.M., Inc, M., Chu, Y.M., et al.: New soliton solutions of fractional jaulent-miodek system with symmetry analysis. Symmetry 12(6), 1001 (2020)

    Article  Google Scholar 

  • Sajid, N., Akram, G.: Novel solutions of biswas-arshed equation by newly \(\varphi \)6-model expansion method. Optik 211, 164564 (2020)

    Article  ADS  Google Scholar 

  • Senol, M., Akinyemi, L., Ata, A., Iyiola, O.S.: Approximate and generalized solutions of conformable type coudrey-dodd-gibbon-sawada-kotera equation. Int. J. Mod. Phys. B 35(02), 2150021 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sirendaoreji: A new auxiliary equation and exact travelling wave solutions of nonlinear equations. Phys. Lett. A 356(2), 124–130 (2006)

  • Sousa, J., de Oliveira, E.C.: A new truncated \( m \)-fractional derivative type unifying some fractional derivative types with classical properties. arXiv preprint arXiv:1704.08187 (2017)

  • Srivastava, M.H., Günerhan, H., Ghanbari, B.: Exact traveling wave solutions for resonance nonlinear schrödinger equation with intermodal dispersions and the kerr law nonlinearity. Math. Methods Appl. Sci. 42(18), 7210–7221 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Sulaiman, T.A., Yel, G., Bulut, H.: M-fractional solitons and periodic wave solutions to the hirota-maccari system. Mod. Phys. Lett. B 33(05), 1950052 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Tang, X.S., Li, B.: Optical solitons and stability analysis for the generalized fourth-order nonlinear schrödinger equation. Mod. Phys. Lett. B 33(27), 1950333 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Vega-Guzman, J., Alqahtani, R.T., Zhou, Q., Mahmood, M.F., Moshokoa, S.P., Ullah, M.Z., Biswas, A., Belic, M.: Optical solitons for lakshmanan-porsezian-daniel model with spatio-temporal dispersion using the method of undetermined coefficients. Optik 144, 115–123 (2017)

    Article  ADS  Google Scholar 

  • Vega-Guzman, J., Biswas, A., Mahmood, M.F., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons with polarization mode dispersion for lakshmanan-porsezian-daniel model by the method of undetermined coefficients. Optik 171, 114–119 (2018)

    Article  ADS  Google Scholar 

  • Yıldırım, Y.: Optical soliton molecules of lakshmanan-porsezian-daniel model in birefringent fibers by trial equation technique. Optik 203, 162690 (2020)

    Article  ADS  Google Scholar 

  • Zayed, E.: Observations on a further improved \(\left(\frac{G^{\prime }}{G} \right)\) —expansion method and the extended tanh-method for finding exact solutions of nonlinear pdes. J. Appl. Math. Inform. 30, 253–264 (2012)

    MathSciNet  Google Scholar 

  • Zayed, E.M., Alngar, M.E., Biswas, A., Yıldırım, Y., Guggilla, P., Khan, S., Alzahrani, A.K., Belic, M.R.: Cubic-quartic optical soliton perturbation with lakshmanan-porsezian-daniel model. Optik 233, 166385 (2021)

    Article  ADS  Google Scholar 

  • Zayed, E.M., Nofal, T.A., Gepreel, K.A., Shohib, R.M., Alngar, M.E.: Cubic-quartic optical soliton solutions in fiber bragg gratings with lakshmanan-porsezian-daniel model by two integration schemes. Opt. Quant. Electron. 53(5), 1–17 (2021)

    Article  Google Scholar 

  • Zhang, S., Xia, T.: A generalized new auxiliary equation method and its applications to nonlinear partial differential equations. Phys. Lett. A 363(5–6), 356–360 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The corresponding author is thankful to his departmental colleagues for their support, inspiration, and proving a good environment for this research.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Kumar Das.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabi’u, J., Das, P.K., Pashrashid, A. et al. Exact solitary optical wave solutions and modulational instability of the truncated \(\varOmega -\)fractional Lakshamanan–Porsezian–Daniel model with Kerr, parabolic, and anti-cubic nonlinear laws. Opt Quant Electron 54, 269 (2022). https://doi.org/10.1007/s11082-022-03648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03648-1

Keywords

Navigation