Skip to main content
Log in

Tunable narrowband terahertz multichannel filter based on one-dimensional graphene-dielectric photonic crystal

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, low terahertz (THz) spectroscopic properties of defective one-dimensional graphene-dielectric photonic crystal (1D-GPC) structure are theoretically investigated and analyzed in detail. The 1D-GPC is composed of a periodic stack of graphene nanolayers separated by isotropic dielectric slabs (SiO2), including an air defect as a central layer. The study is carried out using the well known transfer matrix method. Our numerical simulations showed that the suggested structure exhibits comb-like resonant peaks in the first transmission band of the 1D-GPC. These peaks are narrow, fully separated from each other and their number density increases by increasing the number of periods of the structure. Tunability of the optical characteristics of the device is also explored, taking into account the dependencies to the incidence angle, width, thickness, and refractive index of the dielectric layers, and the chemical potential of graphene sheets. Our calculations reveal that these transmission channels exhibit tunable behaviors against the parameters mentioned above. The observed spectroscopic features of the proposed structure make it an ideal candidate to realize tunable narrowband multichannel filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-sheqefi, F.U.Y., Belhadj, W.: Photonic band gap characteristics of one-dimensional graphene-dielectric periodic structures. Superlattices Microstruct. 88, 127–138 (2015)

    ADS  Google Scholar 

  • Aly, A.H., Mohamed, D., Elsayed, H.A., Vigneswaran, D.: Optical properties of new type of superconductor-semiconductor metamaterial photonic crystals. J. Supercond. Nov. Magn. 31(11), 3453–3457 (2018)

    Google Scholar 

  • Belhadj, W.: Properties of omnidirectional gap and defect mode of one-dimensional graphene-dielectric periodic structures. Opt. Quantum Electron. 52, 162 (2020). https://doi.org/10.1007/s11082-020-02267-y

    Article  Google Scholar 

  • Berman, O.L., Kezerashvili, R.Y.: Graphene-based one-dimensional photonic crystal. J. Phys. Condens. Matter 24, 015305 (2012). https://doi.org/10.1088/0953-8984/24/1/015305

    Article  ADS  Google Scholar 

  • Bludov, Y.V., Peres, N.M.R., Vasilevskiy, M.I.: Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. J. Opt. 15, 114004 (2013). https://doi.org/10.1088/2040-8978/15/11/114004

    Article  ADS  Google Scholar 

  • Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    ADS  Google Scholar 

  • Chang, T.W., Chien, J.R.C., Wu, C.J.: Magnetic-field tunable multichannel filter in a plasma photonic crystal at microwave frequencies. Appl. Opt. 55(4), 943–946 (2016)

    ADS  Google Scholar 

  • Chen, S., Zhang, W., Yang, B., Wu, T., Zhang, X.: Tailoring exceptional points with one-dimensional graphene-embedded photonic crystals. Sci. Rep. 9, 5551 (2019). https://doi.org/10.1038/s41598-019-42092-2

    Article  ADS  Google Scholar 

  • Di Bartolomeo, A., Giubileo, F., Santandrea, S., Romeo, F., Citro, R., Schroeder, T., Lupina, G.: Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors. Nanotechnology 22, 275702 (2011). https://doi.org/10.1088/0957-4484/22/27/275702

    Article  Google Scholar 

  • Dong, Y., Zhang, X.: Unusual transmission properties of wave in one-dimensional random system containing left-handed-material. Phys. Lett. A 359, 542–546 (2006)

    ADS  Google Scholar 

  • Elsayed, H.A.: A multi-channel optical filter by means of one dimensional n doped semiconductor dielectric photonic crystals. Mater. Chem. Phys. 216, 191–196 (2018)

    Google Scholar 

  • Entezar, S.R., Saleki, Z., Madani, A.: Optical properties of a defective one-dimensional photonic crystal containing graphene nanaolayers. Phys. B Phys. Condens. Matter 478, 122–126 (2015)

    ADS  Google Scholar 

  • Falkovsky, L.A., Pershoguba, S.S.: Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007). https://doi.org/10.1103/PhysRevB.76.153410

    Article  ADS  Google Scholar 

  • Fan, Y., Wei, Z., Li, H., Chen, H., Soukoulis, C.M.: Photonic band gap of a graphene-embedded quarter-wave stack. Phys. Rev. B 88, 241403 (2013). https://doi.org/10.1103/PhysRevB.88.241403

    Article  ADS  Google Scholar 

  • Ghasemi, F., Entezar, S.R., Razi, S.: Graphene based photonic crystal optical filter: design and exploration of the tenability. Phys. Lett. A 383, 2551–2560 (2019)

    ADS  Google Scholar 

  • Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19, 026222 (2006). https://doi.org/10.1088/0953-8984/19/2/026222

    Article  ADS  Google Scholar 

  • Ha, Y.K., Yang, Y.C., Kim, J.E., Park, H.Y.: Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals. Appl. Phys. Lett. 79, 15–17 (2001)

    ADS  Google Scholar 

  • Hajian, H., Soltani-Vala, A., Kalafi, M.: Characteristics of band structure and surface plasmons supported by a one-dimensional graphene-dielectric photonic crystal. Opt. Commun. 292, 149–157 (2013)

    ADS  Google Scholar 

  • Hanson, G.W.: Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J. Appl. Phys. 104, 084314 (2008a). https://doi.org/10.1063/1.3005881

    Article  ADS  Google Scholar 

  • Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008b). https://doi.org/10.1063/1.2891452

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)

    ADS  Google Scholar 

  • John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    ADS  Google Scholar 

  • Kaipa, C.S.R., Yakovlev, A.B., Hanson, G.W., Padooru, Y.R., Medina, F., Mesa, F.: Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies. Phys. Rev. B 85, 245407 (2012). https://doi.org/10.1103/PhysRevB.85.245407

    ADS  Google Scholar 

  • Khaalkhali, T.F., Rezaei, B., Kalafi, M.: Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals. Opt. Com. 284, 3315–3322 (2011)

    ADS  Google Scholar 

  • Kim, Y.S., Lin, S.Y., Wu, H.Y., Pan, R.P.: A tunable terahertz filter and its switching properties in terahertz region based on a defect mode of a metallic photonic crystal. J. Appl. Phys. 109(12), 123111 (2011). https://doi.org/10.1063/1.3603009

    Article  ADS  Google Scholar 

  • Kumar, A., Singh, P., Thapa, K.B.: Study of super absorption properties of 1D graphene and dielectric photonic crystal for novel applications. Opt. Quantum Electron. 52, 423 (2020). https://doi.org/10.1007/s11082-020-02548-6

    Article  Google Scholar 

  • Li, L.: Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A 13, 1024–1035 (1996)

    ADS  Google Scholar 

  • Li, C.Z., Liu, S.B., Kong, X.K., Bian, B., Zhang, X.Y.: Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice. Appl. Opt. 50(16), 2370–2375 (2011)

    ADS  Google Scholar 

  • Li, Y., Qi, L., Yu, J., Chen, Z., Yao, Y., Liu, X.: One-dimensional multiband terahertz graphene photonic crystal filters. Opt. Mater. Express 7, 1228–1239 (2017)

    ADS  Google Scholar 

  • Liu, B., Johnson, S.G., Joannopoulos, J.D., Lu, L.: Generalized Gilat–Raubenheimer method for density-of-states calculation in photonic crystals. J. Opt. 20, 044005 (2018). https://doi.org/10.1088/2040-8986/aaae52

    Article  ADS  Google Scholar 

  • Loncar, M., Lee, B.G., Diehl, L., Belkin, M., Capasso, F., Giovannini, M., Faist, J., Gini, E.: Design and fabrication of photonic crystal quantum cascade lasers for optofluidics. Opt. Express 15(8), 4499–4514 (2007)

    ADS  Google Scholar 

  • Lu, Y., Zheng, J., Lu, Y., Ming, N.: Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect. Appl. Phys. Lett. 74, 123 (1999). https://doi.org/10.1063/1.122971

    Article  ADS  Google Scholar 

  • Madani, A., Entezar, S.R.: Surface polaritons of one-dimensional photonic crystals containing graphene monolayers. Superlattices Microstruct. 75, 692–700 (2014)

    ADS  Google Scholar 

  • Madani, A., Roshan Entezar, S.: Optical properties of one-dimensional photonic crystals containing graphene sheets. Phys. B Condens. Matter 431, 1–5 (2013)

    ADS  Google Scholar 

  • Mahmoodzadeh, H., Rezaei, B.: Tunable Bragg defect mode in one-dimensional photonic crystal containing a graphene-embedded defect layer. Appl. Opt. 57(9), 2172–2176 (2018)

    ADS  Google Scholar 

  • Mak, K.F., Sfeir, M.Y., Wu, Y., Lui, C.H., Misewich, J.A., Heinz, T.F.: Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008). https://doi.org/10.1103/PhysRevLett.101.196405

    Article  ADS  Google Scholar 

  • Maurya, R., Singh, P., Singh, P.P., Pal, K., Pandey, G.N., Thapa, K.B.: Absorption and bandwidth properties of graphene based 1D-photonic crystal for THz devices. AIP Conf. Proc. 2220, 020084 (2020). https://doi.org/10.1063/5.0001755

    Article  Google Scholar 

  • Mizuguchi, J., Tanaka, Y., Tamura, S., Notomi, M.: Focusing of light in a three-dimensional cubic photonic crystal. Phys. Rev. B 67, 075109–075116 (2003)

    ADS  Google Scholar 

  • Moharam, M.G., Pommet, D.A., Grann, E.B., Gaylord, T.K.: Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J. Opt. Soc. Am. A 12, 1077–1086 (1995)

    ADS  Google Scholar 

  • Nayak, C., Costa, C.H., Aghajamali, A.: Robust photonic bandgaps in quasiperiodic and random extrinsic magnetized plasma. IEEE Trans. Plasma Sci. 47(4), 1726–1733 (2019)

    ADS  Google Scholar 

  • Nayak, C., Costa, C.H., Phani Kumar, K.V.: Photonic bandgap of random in layer position extrinsic magnetized plasma multilayer. IEEE Trans. Plasma Sci. 48(6), 2097–2105 (2020a)

    ADS  Google Scholar 

  • Nayak, C., Aghajamali, A., Solaimani, M., Rakshit, J.K., Panigrahy, D., Kumar, K.V.P., Ramakrishna, B.: Dodecanacci superconductor-metamaterial photonic quasicrystal. Optik 222, 165290 (2020b). https://doi.org/10.1016/j.ijleo.2020.165290

    ADS  Google Scholar 

  • Nayak, C., Bezerra, C.G., Costa, C.H.: Photonic transmission spectra in graphene-based Gaussian random multilayers. Opt. Mater. 104, 109838 (2020c). https://doi.org/10.1016/j.optmat.2020.109838

    Article  Google Scholar 

  • Pourmahmoud, V., Rezaei, B.: Manipulation of Bragg and graphene photonic band gaps in one-dimensional photonic crystal containing graphene. Optik 185, 875–880 (2019)

    ADS  Google Scholar 

  • Rahimi, H.: Analysis of photonic spectra in Thue–Morse, double-period and Rudin–Shapiro quasiregular structures made of high temperature superconductors in visible range. Opt. Mater. 57, 264–271 (2016)

    ADS  Google Scholar 

  • Razi, S., Ghasemi, F.: Broad band temperature independent photonic crystal based optical filter with response in visible wavelength range. Laser Phys. 29(4), 046204 (2019a). https://doi.org/10.1088/1555-6611/ab036e

    Article  ADS  Google Scholar 

  • Razi, S., Ghasemi, F.: Tunable photonic crystal wavelength sampler with response in terahertz frequency range. Opt. Quantum Electron. 51, 104 (2019b). https://doi.org/10.1007/s11082-019-1821-0

    Article  Google Scholar 

  • Razi, S., Ghasemi, F.: Tunable graphene based one dimensional photonic crystal with applications in terahertz optical integrated circuits. Phys. B Condens. Matter 566, 77–85 (2019c)

    ADS  Google Scholar 

  • Reddy, M.S., Vijaya, R., Rukhlenko, I.D., Premaratne, M.: Low-threshold lasing in photonic-crystal heterostructures. Opt. Express 22(6), 6229–6238 (2014)

    ADS  Google Scholar 

  • Reithmaier, J., Sek, G., Loffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L., Kulavoskii, V., Reinecke, T., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432(7014), 197–200 (2004)

    ADS  Google Scholar 

  • Saleki, Z., Fang, Y., Entezar, S.R.: Broadband terahertz polarizing beam splitter based on a graphene-based defective one-dimensional photonic crystal. IEEE Photonics J. 11(5), 4700313 (2019).  https://doi.org/10.1109/JPHOT.2019.2935084

    Article  Google Scholar 

  • Srinivasan, K., Barclay, P., Painter, O., Chen, J., Cho, A., Gmach, G.: Experimental demonstration of a high quality factor photonic crystal microcavity. Appl. Phys. Lett. 83, 1915–1917 (2003)

    ADS  Google Scholar 

  • Srivastava, S.K., Aghajamali, A.: Investigation of reflectance properties in 1D ternary annular photonic crystal containing semiconductor and high-Tc superconductor. J. Supercond. Nov. Magn. 29, 1423–1431 (2016)

    Google Scholar 

  • Stauber, T., Peres, N.M.R., Geim, A.K.: Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432 (2008). https://doi.org/10.1103/PhysRevB.78.085432

    ADS  Google Scholar 

  • Tokushima, M., Kosaka, H., Tomita, A., Yamada, H.: Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide. Appl. Phys. Lett. 76, 952–955 (2000)

    ADS  Google Scholar 

  • Tolmachev, V.A., Melnikov, V.A., Baldycheva, A.V., Berwick, K., Perova, T.S.: Electrically tunable Fabry–Perot resonator based on microstructured Si containing liquid crystal. Prog. Electromagn. Res. 122, 293–309 (2012)

    Google Scholar 

  • Trabelsi, Y., Ben Ali, N., Belhadj, W., Kanzari, M.: Photonic band gap properties of one-dimensional generalized fibonacci photonic quasicrystal containing superconductor material. J. Supercond. Nov. Magn. 32, 3541–3547 (2019)

    Google Scholar 

  • Wang, B., Zhang, X., García-Vidal, F.J., Yuan, X., Teng, J.: Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys. Rev. Lett. 109, 07390 (2012). https://doi.org/10.1103/PhysRevLett.109.073901

    Article  Google Scholar 

  • Wu, Y., Wu, Y., Kang, K., Chen, Y., Li, Y., Chen, T., Xu, Y.: Characterization of CVD graphene permittivity and conductivity in micro-/millimeter wave frequency range. AIP Adv. 6, 095014 (2016). https://doi.org/10.1063/1.4963140

    ADS  Google Scholar 

  • Wülbern, J.H., Petrov, A., Eich, M.: Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator. Opt. Express 17(1), 304–313 (2009)

    ADS  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    ADS  Google Scholar 

  • Yablonovitch, E., Gmitter, T.J., Meade, R.D., Rappe, A.M., Brommer, K.D., Joannopoulos, J.D.: Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 67, 3380–3383 (1991)

    ADS  Google Scholar 

  • Yeh, P., Yariv, P.A., Hong, C.: Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am. 67, 423–438 (1977)

    ADS  Google Scholar 

  • Zhan, T., Shi, X., Dai, Y., Liu, X., Zi, J.: Transfer matrix method for optics in graphene layers. J. Phys. Condens. Matter 25(21), 215301 (2013). https://doi.org/10.1088/0953-8984/25/21/215301

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Belhadj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhadj, W., Al-Ahmadi, A.N. Tunable narrowband terahertz multichannel filter based on one-dimensional graphene-dielectric photonic crystal. Opt Quant Electron 53, 27 (2021). https://doi.org/10.1007/s11082-020-02642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02642-9

Keywords

Navigation